
ARTIFICIAL INTELLIGENCE SEARCH

ASSIGNMENT

This is the assignment for the sub-module Artificial Intelligence Search of
the module Software Methodologies. It is to be completed and handed in
via DUO by 2 p.m. on Friday 15th December 2017.

Basic instructions

You are to implement two different algorithms, using techniques studied
during the lectures, but possibly also additional algorithms you have de-
vised or discovered for yourself, to solve the Travelling Salesman Prob-
lem (TSP). Your implementations should seek to obtain the best Trav-
elling Salesman tour that you can, given a collection of cities and their
distances.

The intrinsic difficulty of the underlying algorithms that you choose will
impact upon the marks awarded. The obvious contenders for algorithms
to implement from the course are:

• a brute-force search
as you are doubtless aware, a brute-force search for the TSP will only
work for very, very small sets of cities

• a basic greedy algorithm
the most obvious one is ‘build the tour by moving to the nearest city
from wherever you happen to be’, i.e., ‘nearest neighbour’

• a best-first search without heuristic data
depending on how you choose your evaluation function, you can im-
plement a breadth-first search, a depth-first search, and various other
algorithms

• a greedy best-first search with heuristic information
you’ll have to build your own heuristic functions, though, as none are
supplied

• A* search
again, you’ll have to build your own heuristic functions; also, note
that an A* search with a ‘good’ heuristic is optimal and also that the
TSP is NP-hard

• a hill-climbing search
this is very easy to implement once you decide upon the appropriate
coding of the TSP as a search problem

1



• a simulated annealing algorithm
there is much scope for experimentation

• a genetic algorithm
there are many ways in which you can solve the TSP using a genetic
algorithms and there is much scope for experimentation.

The algorithms written in bold are algorithms that I regard as ‘more in-
volved’ and you should aim to implement at least one of these ‘more in-
volved’ algorithms. More credit will be given for implementations
of ‘more involved’ algorithms (see the mark scheme below); besides,
‘more involved’ algorithms will probably give better results and so you will
pick up more marks for the quality of the tours found too (again, see the
mark scheme below). Apart from the algorithms above, there are many
other algorithms that you might implement but which are not covered in
this course. If you wish to implement one of these algorithms then this
is absolutely fine and I encourage you to explore. If you are unsure as to
whether an algorithm that you wish to implement is ‘more involved’ or not
then please contact me. Other algorithms implemented in the past have
included Ant Colony Optimization and Beam Search.

You are strongly advised to develop your own implementations
using the pseudo-code given in lectures rather than search the
web for related implementations.

You should ensure that you have implemented your algorithms well before
the end of Michaelmas Term so as to give yourself time to experiment on
the Travelling Salesman instances upon which your implementations are
to be evaluated. The time allocated for experimental work will give you
ample time to fine-tune your implementations, in the light of experimental
experience, so as to obtain the best results you can. The tours provided
by your implementations to these instances should be submitted, along
with a report of your implementations and your experimentation (what is
expected is described in more detail below).

The data-files

The actual instances of the Travelling Salesman problem (more precisely,
the symmetric Travelling Salesman problem, where the distance from city
x to city y, denoted (x, y), is always the same as the distance from city y
to city x, that is, (y, x)) will be given in the following form (the cities are
always named 1, 2, . . . , n).

NAME = <string = name-of-the-data-file>,
SIZE = <integer n = the number of cities in the instance>,

2



<list-of-integers d1, d2, d3, . . . , dm> where the list consists of
the distances between cities (1, 2), (1, 3), . . . , (1, n),
then the distances between cities (2, 3), (2, 4), . . . , (2, n),
. . .
and finally the distance between the cities (n− 1, n).

Commas ‘,’ are used as delimitters in data-files; carriage returns, end-of-line
markers, spaces, etc., should be ignored.

So, for example, the instance with 5 cities where: the city 1 is at the origin;
the city 2 is 3 miles north; the city 3 is 4 miles east; the city 4 is 3 miles
south; and the city 5 is 4 miles west, and all distances are the Euclidean
distances between cities, is encoded as the city-file AISearchsample.txt:

NAME = AISearchsample,

SIZE = 5,

3, 4, 3, 4,

5, 6, 5,

5, 8,

5

With reference to the remark above, re: delimitters, the above city-file
could well be presented with no carriage returns, etc., as simply

NAME = AISearchsample,SIZE = 5,3,4,3,4,5,6,5,5,8,5

Note that in general a given instance need not be based on the Euclidean
distances of a collection of cities on the plane. You should assume that a
given distance between two cities is a non-negative integer (and so it could
well be the case that the distance between two distinct cities is 0).

First task: Your first task is to be able to read in the data from a city-file
and store it internally for use by your implementation. I strongly recom-
mend that you write some code to read the data from a city-file into a
two-dimensional list whose (i, j)th entry stores the distance from city i to
city j. So, with the city-file AISearchsample.txt, above, if the list is called
city then city[2][3] has the value 5 as does city[3][2]. Also, there are carriage
returns and other control characters in the city-files. It is your job to ignore
these characters. The reason these characters are there is because this is
how data is presented in the real world: as ‘dirty data’. I would advise
reading the city-files character by character and stripping out characters
that are not as you would expect from a well-formatted city-file. I have
supplied a sample city-file, AISearchtestcase.txt (that is dirty), for you
to experiment on.

The data-files that you will have to execute your code on will be called

3



• AISearchfile012.txt

• AISearchfile017.txt

• AISearchfile021.txt

• AISearchfile026.txt

• AISearchfile042.txt

• AISearchfile048.txt

• AISearchfile058.txt

• AISearchfile175.txt

• AISearchfile180.txt

• AISearchfile535.txt.

The numeric digits denote the number of cities in the particular instance.

Your tour-files

You are expected to derive the best tours that you can with your implemen-
tations and to provide the actual tour in each case. What follows next is
extremely important! Your tour-file should be named by prefixing the
name of the city-file with the prefix ‘tour’ and should have the following
form:

NAME = <string = name-of-TSP-instance-file>,
TOURSIZE = <integer n = integer-giving-the-number-of

-cities-in-the-tour>,
LENGTH = <integer len = integer-giving-length-of-tour>,
<list-of-integers x1, x2, x3, . . . , xn> where x1, x2, x3, . . . , xn
is a list of the cities in the order of the tour (with the final hop
being from city xn back to city x1).

So, a tour-file for the city-file AISearchfile012.txt will be the file named
tourAISearchfile012.txt and possibly of the form:

NAME = AISearchfile012,
TOURSIZE = 12,
LENGTH = 93,
1,3,4,6,8,5,2,9,10,11,7,12

4



I have supplied a sample tour-file, tourAISearchtestcase.txt (for the
sample city-file AISearchtestcase.txt).

I also supply a small Python program for you to verify that
your tour-files are both correctly formatted and such that the tour
you present does indeed have the length that you claim.

USE THIS PROGRAM TO VERIFY YOUR TOUR-FILES!

Last year, 13 students did not bother to do this and their incorrect
tour-files resulted in them scoring zero marks for their tours.

Material to be submitted

You are expected to hand in a folder named with your username, e.g.,
dcs0ias, and within which:

• there are 2 folders named

TourfileA and TourfileB.

Each folder should contain 10 tour-files, named

tourAISearchfile012.txt, tourAISearchfile017.txt, etc.,

detailing the best tours that particular implementation has found in
the respective collection of cities (Tourfile A contains the tours from
your first algorithm and Tourfile B the tours from your second).

• there is a pdf file, entitled dcs0iasreport.pdf, in the folder named
dcs0ias including a detailed description of your implementations
(each marked as A or B, as appropriate), tabulations of the results
produced, an explanation of your experiments, and critical comments
(the report, about which I say more when I discuss the mark scheme,
should be no more than 4 pages of A4, in a single column format, and
no smaller than 11 pt. font; there is no need for cover and contents
pages, etc.)

• there is another folder, called dcs0iasrest, in the folder dcs0ias

containing your implementations and anything else of relevance.

Ensure that your material is handed in as above with files and folder so
named (you can zip everything together into one file if you like).

5



Why are only 4 pages allowed? Paraphrasing your work is an important
skill, especially in industry. More often than not, you have a short period
of time or a short document in order to get your ideas across as best you
can. What is important is that you use the 4 pages to include salient
and important data. The whole point of restricting the length is to give
you practice at focussing your ideas and presenting yourself succinctly and
cogently.

Mark scheme

Credit will be given for good working implementations and good experimen-
tal results as demonstrated in your detailed account, structured as follows.
There are 20 marks available in total, apportioned as follows (though your
final mark will be returned as a percentage).

• Full and clear descriptions of your implementations, focussing on
the different implementation issues arising (do not include your code
in your report). Focus on specific implementation details such as
choice of data structures or data representation, use and implementa-
tion of probabilistic methods, technical aspects of specific algorithms
such as the implementation of crossover and mutation in a genetic
algorithm, etc. (do not include your code in your report). There are
[3 marks] available for a ‘more involved’ algorithm and [1.5 marks]
available for an easier algorithm. So, there are potentially [6 marks]
available based on the descriptions of aspects of your implementa-
tions. Do not just copy the pseudo-code of your algorithms
from the slides. I am interested in implementation details,
not algorithmic details.

• A thorough (tabulated) description of your results so that you specify
the lengths of the best tours obtained (of course, these lengths are
witnessed by the tour-files that you have submitted). The better the
tours you find, the better the marks. There are [6 marks] available
as regards the quality of your tours. Note that although I want to
see the lengths of the tours found for both your implementations, I’ll
award the marks on the basis of the overall best tours found (so, if you
had one algorithm that gave really good tours and one that didn’t,
but might be interesting in other ways, then you’ll score on the basis
of your good tours).

• Details of your experiences with your implementations and the fine-
tuning and experimentation that you undertook in order to try and
improve performance. There are [8 marks] available as regards ex-
perimentation. The fact that there are more marks available for ex-
perimentation than anything else should tell you that I expect you

6



not only to implement two basic algorithm but also to experiment
and investigate varying different parameters within your implemen-
tations. You should undergo experimentation systematically and give
a clear account of the things that worked and the things that didn’t.
Be adventurous and try different things.

You will be given marks only for the content of the report. Do not
expect me to look in other files or folders for missing details. These other
folders are supplied just for me to clarify your results if I choose to do so.

It is absolutely crucial that you conform to the above format. As
I explained above, I automatically check that your tours are indeed of the
lengths you state and if I can’t do this because you have not formatted files
properly then you will score no marks for tour quality.

In general, I am looking for a good understanding of the algorithms you have
implemented and some ingenuity in manipulating these implementations
so as to try and get better results. I will reward ingenuity even if the
method you have chosen to implement does not in general give good results.
However, I will also reward students who get good results. If you choose
to implement a basic greedy algorithm, for example, then you may not
score so well, because this algorithm is easy to implement. However, you
might gain extra credit if you were to try and improve your basic greedy
algorithm by some ingenuity. The choice is yours as to the algorithms you
implement. As regards your implementation descriptions, I am looking for
well written, concise, and informative presentations, and as regards running
your implementations, I am looking for ‘innovative tinkering’ to try and get
improvements.

As an example scenario, suppose that you are a student who does not
enjoy the content of this course or who is short of time (for whatever rea-
son!) and who has decided to implement two algorithms that are not ‘more
involved’. If the implementations are reasonably well written up then you
might score 2/3 marks (the most you could have scored would have been 3
as you didn’t implement a ‘more involved’ algorithm). Perhaps you fiddled
around a bit with your implementations and did manage to improve them
with a little ingenuity; so, maybe you picked up 3.5/6 marks for experimen-
tation. Finally, because you originally chose basic algorithms, perhaps your
original tours were not that good and would have only scored 3/6 marks.
However, your experimentation did improve things so that you scored 3.5/6
marks for tour quality. This would give you a total of 9/20 = 45%. This
is an absolute bare minimum if you wish to pass this coursework. I am
expecting more!

7



Some remarks and hints

As mentioned earlier, the following methods are available to you (as studied
in the course):

• brute-force search

• basic greedy algorithm (‘nearest-neighbour’)

• best-first search without heuristic data

• greedy best-first search

• A∗ search

• hill-climbing search

• simulated annealing

• genetic algorithm.

There is a little bit of work to do as regards the implementation of each
method and here is a little bit of help.

Brute-force search

Here is a hint as to how all tours in an n-city Travelling Salesman instance
can be generated. Each tour is stored in a 1-dimensional list T of size n,
where the elements are all distinct and come from {1, 2, . . . , n}. The tour
stored in T is T [1], T [2], . . . , T [n], T [1]. In fact, we can similarly store a tour
of the m ≤ n cities {1, 2, . . . ,m} in T [1], T [2], . . . , T [m], with T [m + 1] =
T [m + 2] = . . . = T [n] = 0.

Our procedure gen(T,m) takes as input a tour of m cities, x1, x2, . . . ,
xm, x1, say, held in the list T (as above), and proceeds as follows.

• If m = n then we compare the length of the tour T (of n cities) with
the length of the shortest tour found so far and if T is shorter then
we remember T and its length.

• If m < n then gen(T,m) generates all tours of the cities {1, 2, . . . ,m,
m+1} by inserting the value m+1 in location 1, then location 2, . . .,
then location m, then location m + 1 of T (so that the cities coming
after m+1 are ‘shifted’ along the array). Interleaved with generating
each tour, which we refer to as T ′, we recursively call the procedure
gen(T ′,m + 1).

In more detail, gen(T,m) is as follows.

8



if m == n then

calculate the length of the tour T and if it is shorter

than the best tour found so far, remember T and its

length as the best tour found so far

else

for i = 1 to m + 1 do

T ′ = T with the city m + 1 inserted into location i
call gen(T ′,m + 1)
T ′ = T with the city m + 1 removed from location i

fi

Thus, the following pseudo-code generates and tests all possible tours, given
the distance-file of n cities.

T = [1, 0, 0, . . . , 0] %initialize tour T as [1]
m = 1 %initialize number of cities of tour T as 1
call gen(T,m)

output the shortest tour found

Although I don’t recommend that you implement a brute-force search,
brute-force searches are good for checking optimal values in small cases;
also generating all combinatorial possibilities comes up regularly and it is
useful to know how to do this. If you do implement a brute-force search
then you can always choose to kill an execution and take the best tour you
have found up until that point as a guide.

Best-first, greedy best-first and A∗ search

The Travelling Salesman Problem needs to be realised as a search problem.
One way of doing this is to have the set of all lists of distinct cities as the
states together with the lists of n distinct cities augmented with the start
city (and so a state is a list of between 0 and n cities, or a list of n + 1
cities where the first n are distinct and the last city equals the first). There
is one action with a state t′ being a successor of a state t if the list t′ is
the partial tour t extended with one new city (not appearing in t), or if t
has length n and t′ is t augmented with the first city of t. The step-cost
associated with any transition from state t to state t′ is the cost of moving
from the final city in the list t to the final city of the list t′. The initial
state is the list t0 consisting of just the start city and a goal state is a list
of n + 1 cities. An optimal solution is thus a path from the initial state to
a goal state of minimal cost.

There are a number of heuristic functions available for the Travelling Sales-
man Problem. One of these is the heuristic h where, given a state t =
x1, x2, . . . , xr, h(t) is defined to be the minimal step-cost of moving to

9



a state of the form t′ = x1, x2, . . . , xr, xr+1 (that is, always move to the
nearest legal city from where you are; if there is no city to move to then
h(t) = 0).

Another heuristic is as follows. Given some state t, your heuristic function
h(t) is the sum of the distance of the closest city c that has not been visited
to the last city of the partial tour t plus the distance of any other unvisited
city (different from c) to the start city (if there aren’t enough unvisited
cities to apply this rule then the heuristic value is 0). This heuristic reflects
that you want your next city to be visited to be close to the current city
but that you don’t want to be left with a city that is a long way from the
start city.

Yet another heuristic h is as follows. Given a state t = x1, x2, . . . , xm, h(t)
is defined to be the minimal step-cost of moving to a state t′, where t′ is t
with some new city inserted somewhere within t, e.g., if t = 1, 5, 4, 7 then
t′ might be 1, 5, 6, 4, 7. If this heuristic is to be used then the transition
function (above) needs to be amended to allow such transitions.

Bear in mind that A∗ search gives optimal solutions (under mild circum-
stances) and so unless you have a brilliant heuristic function (which is
unlikely) then this method will only work on small instances. I have no
idea how the above heuristics will pan out on the instances given!

Hill-climbing search and simulated annealing

Here, the states might be the set of all possible tours of n cities, and one
state t′ might be a successor of another state t if a swap of the positions
of two (or more!) of the cities in the tour t results in the tour t′. The
heuristic cost function of a state might be the length of the tour. There
are numerous other definitions of a successor function.

Genetic algorithms

In order to formulate the Travelling Salesman Problem for solution by a
genetic algorithm, we need to define our population. One way of doing this
is to define the population as a set of tours of n cities, represented as strings
of length n. The fitness of a member of the population might be just the
length of the tour. We now need to come up with a notion of mutation
and crossover. One way of defining a mutation is just to randomly swap
the positions of two cities within a tour (though there are many others).
Defining a notion of crossover is more difficult. However, given two tours
t = x1, x2, . . . , xn and t′ = x′1, x

′
2, . . . , x

′
n, we could define a new tour as

follows.

• Randomly choose some i ∈ {1, 2, . . . , n− 1} and form the strings

s = x1, x2, . . . , xi, x
′
i+1, x

′
i+2, . . . , x

′
n

10



and
s′ = x′1, x

′
2, . . . , x

′
i, xi+1, xi+2, . . . , xn

(note that these might not be tours as some cities might be missing
and some repeated).

• Scan through s and make a list of the cities not appearing in s and
a list of the locations containing repeated cities (these lists have the
same length). Replace every repetition with a missing city (according
to some user-defined strategy). Do the same for s′.

• Hence, we obtain two tours s and s′, and we take the crossover as the
shortest one.

For those really interested, there is a paper:

• P. Larranaga, C.M.H. Kuijpers, R.H. Murga, I. Inza and S. Dizdare-
vic, Genetic Algorithms for the Travelling Salesman Problem: A Re-
view of Representations and Operators, Artificial Intelligence Review
13 (1999) 129–170

that discusses genetic algorithms for the TSP.

Please note: the above hints are just suggestions and you might care to
come up with your own ideas. Also, it will be up to you to (experimentally)
vary parameters (e.g., the different probabilities in a genetic algorithm or
a simulated annealing algorithm) to improve your solutions.

11


