
gkgf37

An optimal solution for the Travelling Salesman
Problem

Abstract

In the following study we attempted to derive an optimal solution for the Travelling
Salesman Problem, also known as TSP, by implementing two distinct method: the Hungarian
Method, and by Simulated Annealing. During the process, we tried to improve our methods
to get better results and optimal routes in various ways. We found that the Simulated
Annealing gives more optimal routes for all cases than the Hungarian Method, moreover, we
concluded that the latter does not work for too big or complex systems.

1 Introduction

One of the most challenging optimisation problems in mathematics is the so called Travelling
Salesman Problem (TSP), which was first formulated and examined in the 1930s by Karl Menger
in Vienna and Harvard. In the TSP, one seeks for an optimal route between n > 0 cities visiting
each city only once such that given the cost of the route(in our case, it is the distance) between
the ith and the j th city (i,j ≤ n and i 6= j), the total cost of the journey is minimised. The
TSP is an NP hard problem, and no solution has been found for it yet, however throughout the
last century several algorithms have been invented to find an optimal solution for such problem,
some better than others. [1] Two of these are the Hungarian Method (algorithm A) and the
Simulated Annealing (algorithm B), which we discuss below.

2 Hungarian Method

2.1 Structure

The Hungarian Method is an efficient way to solve assignment problems, and the TSP can
be viewed as a zeros-assignment problem. To begin with, we are going to form a cost-matrix
based on the distances between cities, the rows represent the origins and the columns stand
for the destination of the travels between cities. By definition, the salesman cannot visit a city
twice or more, thus we set the diagonal of our matrix to infinity to prevent looping.(1) First
of all, for each row/column we perform row and column reduction by selecting the minimum
value of them and subtracting it from all entries in the row/column. By doing so, we derive our
reduced-matrix with at least one zero entry in each row and column. Now our aim is to cover
the zero entry cells with the least lines possible, given all lines must be horizontal or vertical.
To generalise this, one must do row and column scanning, as follows: (2) first look for rows
with single zero entries, mark the cell with the single zero and cross out the corresponding
column. After scanning each row, do the same for each column, crossing out the rows of the
cell with the single zero. Note that by crossing out rows/columns, we are going to ignore these
rows/columns for subsequent scans. By considering only the remaining entries of the matrix
we derive our remaining-matrix . If there is none or more than one zero entry in a row/column
we skip the given row/column. Repeat scanning on the remaining-matrix until we have no
zeros left in the remaining-matrix .(3) Note that if we end up covering every single row and
column as a result of the procedure, we can simply focus on covering either every row or every
column, but we shall not cover all of the rows and columns.(4) Once we have no zeros left in the
remaining-matrix , check whether or not the number of crossed out rows and columns is equal
to the number of cities. If so, then we found an optimal solution. On the other hand, if not,
then select the minimum value of the remaining-matrix : remaining-minimum, and subtract it
from all entries in the remaining-matrix . Now bring back the crossed out rows and columns,

1

gkgf37

and add the remaining-minimum to the entries which had been crossed out twice, that is: one
vertical and one horizontal line. As a result, we derived our new reduced-matrix, and with this,
we start again from (2), until we find an optimal solution.(5) Once an optimal solution has
been found, that is, the number of crossed out rows and columns is equal to the number of cities,
one can compose a complete optimal route through all cities as follows. Starting from the top
left marked cell, which must contain zero, we attempt to create a route through all cities: the
marked cell (m,n) tells us that the salesman goes from the mth city to the nth city, thus n will
become our new m, and in the row indexed by n we find the next marked cell, which tells us
where to go next. One follows this procedure until a complete optimal route is constructed. [2]

2.2 Fine-tuning

During the implementation of this method we have introduced several improvements to tackle
arising problems and to improve performance such as:

• If rows and columns in remaining-matrix contain only two or no zeros in them, one might
get stuck on row and column scanning, generating an infinite loop of scanning. In such
case, mark a cell with zero entry which has no other marked cells in the corresponding row
or column, and cross out its row, thus we have created columns with single zeros, and we
can proceed forward with the scanning.

• During the process of finding an optimal route in (5) the distribution of marked cells
might be in such a way that the salesman gets into a loop of some cities m < n. In this
situation, we take cells with the next smallest element of the latest reduced-matrix into
consideration, and attempt to build a route using the marked cells and these new cells.
We repeat this procedure until a complete optimal route is found.

• We used online Hungarian Method calculator tools and actual paper-based calculations to
set examples of matrices for TSP and work through them. By comparing these outcomes
with ours, we managed to make some changes to our program in order to get the accurate
results.

2.3 Limitations

The biggest challenge with this implementation was to handle complex matrices. For almost
each tour file we had different issues arising during the execution of the method. We managed
to solve most of these, and thus for simple matrices with less cities, such as 12, 17, 21, 26,
42, 48, the method appeared to work, nevertheless for more complex systems our experiments
raised errors and even got into infinite loops. The reason for this could be due to faulty or
poor coding, since there were several issues and special cases which could not always be fully
handled. Another reason for the lack of an optimal tour for large amount of cities could be
that the Hungarian Method simply might not be generalisable for any number of cities. As an
example, during experimentations with 58 cities or 180 cities one can find that the program ran
out of iterations during a while loop looking for the optimal tour by taking the next smallest
element of the final remaining-matrix into consideration.

3 Simulated Annealing

3.1 Structure

Simulated Annealing is a probabilistic algorithm for finding a good global maximum or
minimum for an optimisation problem. This is a popular and efficient approach usually used
to find a good optimal route for the TSP, since its strength is that it can escape from local
maxima/minima, while many other algorithms might get trapped at these critical points. [3]

2

gkgf37

The technique is that starting with an initial tour, we swap cities randomly, and analyse the
resulting tour. If it is better than the previous one, then we change our current tour for this new
one, nonetheless predefined if it is not better, it still can become the new tour, based on some
predefined heat function, which decreases by time, thus the probability of setting a worse tour
to the new tour decreases as time passes. (1) To successfully implement this, firstly we create
a cost-matrix of the system such as for the Hungarian Method. (2) Next, we define a random
initial tour to start with and calculate the the corresponding cost(total distance travelled). (3).
Then we randomly choose 2 cities, reverse the order of the cities between them, and calculate
the new cost of this new tour. If the new cost is less than the previous one, then this new tour
becomes the current tour, and we do step (3) again. The key point of this method is that the
number of iterations of step (3) and the probability of taking a worse tour over a better one is
based on some heat function and on the difference between the two tours, hence it allows the
system to get out of local minima. As step (3) is repeated, the likelihood of changing the better
tour for a worse one decreases, furthermore the recurrence of (3) stops when the temperature
drops below a predefined stopping-temperature, Ts. In this study, we use the following heat
function:

Tn =
Tn−1
β

, (1)

where n ≥ 1 and n ∈ N, moreover Tn is the current temperature, Tn−1 is the previous one, and
β is some predefined constant which is used to decrease the temperature by a small amount for
every iteration. The probability of taking a worse tour over a better one is

P =
1

e|4E|/Tn
, (2)

where 4E is the difference between the cost of the tours we are comparing: one before, and one
after reversing the route between two randomly selected cities. Early on, when the temperature
is high, the probability of taking a worse tour over a better one is high, thus it prevents getting
caught at local minima. This probability however decreases exponentially, as the temperature
decreases. The process detailed above runs until Tn reaches Ts, then halts, and outputs the final
tour found. Thus we derived an optimal tour for the TSP using Simulated Annealing.

3.2 Fine-tuning

To improve the efficiency and accuracy of the implementation, we have done the following:

• We set the initial parameters carefully such that the iterations run for a sufficient amount
of times, P in (2) decreases slow enough: T0 = 10000, β = 1.00001, and Ts = 0.00001.
Having investigated results with various parameters several times, we have found that,
statistically, for smaller T0, and greater β and Ts the method produces worse tours.

• To further improve efficiency we applied a basic greedy algorithm and we set the resulting
tour as the initial tour for the annealing. By doing this, we already start with a somehow
optimal tour, thus a better tour is more likely to be found compared to the case when we
start with a random initial tour.

• Finally, we put the whole implementation in a loop of 100 iterations and chose the best
out of the produced tours, for each tour file, to derive more accurate tours.

During implementation and experimentation of this method we did not come across any
serious issue or special case.

3

gkgf37

4 Results and conclusion

Figure 1: Table of lengths of optimal tours for the discussed methods.

On the table in Figure 1 one can clearly see that the tour-length outcomes of the Simu-
lated Annealing were better in multiple ways; the program successfully ran for all tour files,
no matter how complex the cost-matrix was. Furthermore it also achieved better results than
the Hungarian Method, apart from the case of AISearchfile012, where both techniques showed
the same result. As we go along into more complex systems, we see worst results as we go
through the implementation of the Hungarian Method, plus in some extreme cases we do not
even get any results. In addition, the Simulated Annealing algorithm could be further improved
by introducing a logarithmic heat function instead.

In conclusion, using the Simulated Annealing is a relatively good and efficient approximation
when one is looking for the best possible tour available in the TSP. On the other hand, the
Hungarian Method gives poor results for optimal tours, but this could be improved by further
development of the code.

5 References

References

[1] http://www.math.uwaterloo.ca/tsp/history/index.html

[2] http://www.universalteacherpublications.com/univ/ebooks/or/ch6/travsales.htm

[3] http://katrinaeg.com/simulated-annealing.html

4

http://www.math.uwaterloo.ca/tsp/history/index.html
http://www.universalteacherpublications.com/univ/ebooks/or/ch6/travsales.htm
http://katrinaeg.com/simulated-annealing.html

	Introduction
	Hungarian Method
	Structure
	Fine-tuning
	Limitations

	Simulated Annealing
	Structure
	Fine-tuning

	Results and conclusion
	References

