1 General Requirements

The assignment has been made to demonstrate that students do understand the principles of Image Processing.

Implementation:

- Use Python 2.7 and Python OpenCV or any other Python library to read image data, access image pixels, and write image data.
- Do not use already implemented mathematical morphology functions in libraries, such as OpenCV (e.g. 'cv2.erode').
- Make sure that your code can be run on a Durham University Linux system terminal.
- Test your programs on an image 'lena.png' provided on DUO.

Students will be marked based on the quality of the code and usability of the program when compared with the the state-of-the-art implementations.

2 Mathematical Morphology

2.1 Erosion (25\%)

Implement grayscale erosion with a square structuring element of a size 5×5 pixels.

2.2 Dilation (25\%)

Implement grayscale dilation with a square structuring element of a size 5 x 5 pixels.

2.3 Opening (15\%)

Using your erosion and dilation implementations, implement a grayscale opening with a square structuring element of a size 5×5 pixels.

2.4 Closing (15\%)

Using your erosion and dilation implementations, implement a grayscale closing with a square structuring element of a size 5×5 pixels.

2.5 Code Quality (20\%)

Full principles of readable and reusable code apply. Each function/class should include:

- A good help text explaining the function/class usage. Try using headers!
- Enough comments to aid the user in understanding the algorithm.

Avoid code redundancy making the code easier to read and keeping it organized.

3 Submission:

To submit your work create a directory named by your username (e.g. abs123). Place all required files in this directory. ZIP (not .rar or .z7) this entire directory structure and submit it via DUO (late submissions will be penalised following department's policy).

You must submit the followings:

- Full Python programs source code for your solution to the above tasks.

