
Mathematical Modelling II, Durham University

Movement inside the cell

1 Assignment Description

These assignment sheets describe the modelling of two methods of transport in living
cells. They provide a brief description of the topic and set problems some of which must be
solved using python programs.

The assignment consists in writing an essay that contains an answer to each question and
which expand on the material included in these notes. The references are there to provide
you with extra source information and they are not exhaustive.

The essay must be readable on its own without reference to the assignment sheets. The
essay must not necessarily follow the same order as the notes and does not need to answer
the questions in the same order either. As a matter of fact using a different structure and
order is a bonus. Do describe the interpretation or consequences of the results that you
obtain. We also expect you to focus more on some aspects of the material presented in
these notes. This could be a more detailed discussion of the derivation of the equations
or algorithm described in the notes or more information about the structure of the cell
to better explain the interpretation of the results. Don’t hesitate to ask questions to your
Biology friends if you have any. You can also solve problems which are not set and which
answer some further questions that you might have.

Some part of the assignment sheet will need to be included in your essay, but do not copy
these section verbatim, use your own words. The equations do not need to be changed, but
you can provide more detailed explanation or derivation when appropriate.

You have to submit 3 files: 1 pdf file for the essay and 3 python programs. We advise
you to typeset your essay in LaTeX but this is not compulsory.

The essay must have a maximum of 10 pages (using as a reference the provided LaTeX
style file).

2 Introduction

Cells are the smallest living organisms and all large living creatures, like humans, are
made of a huge number of cells. Cells are made out of a variety of elements, called organelles
by biologists, each of which has very specific functions (see [2] and [1] for example). During
its life cycle, the cell must transports some molecules within itself. For example proteins
manufactured in the vicinity of the cell nucleus are needed in specific regions of the cell
located elsewhere. The big question is how can large molecules like proteins or other larger
complexes, be transported within the cell?

There are two main methods of transport. The first one is passive diffusion: molecules
in the cell are constantly bombarded by other molecules and as a result are constantly
being shaken somewhat like a ball in a pinball machine. These collisions are the result of
temperature (temperature is actually a measure of the kinetic energy of free molecules) and
result in a completely random displacement.

Cells can vary greatly in size, from a few micro-meters for the smallest to several hundred
of micro-meters for the largest. Nerve cells can actually extend over several meters but they
are an exception as they have very unusual shapes.

The other type of displacement is active transport: cells contains long molecular chains,
polymers, forming what is called the cytoskeleton. These long interconnected molecules
form long pathways on which some proteins, called motor proteins, can walk while pulling
a cargo (see the video [4]). This type of transport still has some random component but is
nevertheless more systematic.

The aim of this project is to study these two methods of transport and to determine which
one is the most effective for different type of objects.

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 1

3 Diffusion

Diffusion is the results of the completely random collision between molecules. It can
be described using various methods. The most analytical one is to consider a density
F (x, y, z, t) (which can be considered as a probability density for a single molecule or a
concentration for a large number of identical molecules). It can be shown, see [3], [4], that
for molecules which are randomly diffusing, F (x, y, z, t) satisfies the equation

∂F

∂t
= D

(
∂2F

∂x2
+
∂2F

∂y2
+
∂2F

∂z2

)
. (1)

To find solutions one uses the method of separation of variable to seeks solutions of the type
F (x, y, z, t) = f(x, t), g(y, t)h(z, t) and we find that

∂f

∂t
= D

∂2f

∂x2
(2)

with similar equations for g and h.
A solution of (2) is given by

f(x, t) =
1

2
√
πDt

e−x
2/(4Dt) t > 0. (3)

Notice that (1) is invariant under time and space translation meaning that if F (x, y, z, t)
is a solution F (x + dx, y + dy, z + dz, t + dt) is also a solution for all dx,dy,dz and dt. This
implies that the distribution can be centred anywhere.

Question 1:

• Check by direct substitution that (3) is a solution of (2).

Using a suitable trick, one can check that if t > 0,

N(t) =

∫ ∞
−∞

f(x, t)dx = 1. (4)

This shows that diffusion preserves the number of particles, as expected.

Question 2:

• It is obvious that (3) is singular for t = 0, yet, limt→0N(t) = 1. Use this to justify
that f can be used to describe the probability distribution of a single diffusing
particle initially located at the origin x = y = z = 0.

The next question is to determine how long it takes, on average, to cover a distance x.
First of all we can easily see that the average distance travelled by the particle is zero:

< x >=

∫ ∞
−∞

xf(x, t)dx = 0. (5)

So on average, a diffusing particle does not move, but this is only on average as it does move
about. To evaluate a travelling time we must compute the average value of x2:

< x2 >=

∫ ∞
−∞

x2f(x, t)dx (6)

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 2

Question 3:

Show that

< x2 > = 2Dt. (7)

Hint define λ = 1/(4DT) and rewrite (3) as a function of λ rather than Dt. Then use
(4) to compute dN(t)/dλ.

The interpretation of (7) is that the typical distance covered during a diffusion time t is
given by

d =
√
< x2 > =

√
2Dt. (8)

We thus see that the distance covered only increases like
√
t and so for long displacement,

diffusion is not effective at all.
To evaluate the time needed for molecules or organelles to diffuse inside de cell, we

need to know how to compute D. This was derived by Einstein who used a result derived
by Stokes to show that for a diffusing sphere of radius r

D =
kbT

6πηr
(9)

where kB = 1.38× 10−23J/K is known as the Boltzmann constant, T is the temperature of
the system in Kelvin and η the dynamic viscosity of the fluid. For water η = 10−3Pa s in the
SI units. The inside of the cell is mostly water and the viscosity of the fluid, called cytosol,
has been measured to be approximately 2 to 4 time that of water.

Question 4:

Some of the smallest objects in the cell are proteins. There are many of them and they
are all relatively small. For example tubulin, the proteins of which microtubules are
made, are not really spherical but can be approximated as a sphere of radius 3nm =
3 × 10−9m. Compute D for that protein and how long it typically takes to travel a
distance

√
< x2 > = 50µm = 50 × 10−6m. (Use the temperature T = 300K and η to

be 2 times that of water). (Notice that in SI units, the units of D are m2/s.)

Cells generate many tiny spheres made out of a lipid (oil) membrane inside which some
signalling material (very specific proteins) are stored and shipped to various part of the cell.
These vacuoles are really like parcels and are very important for cells to evolve and survive.
Their size can vary and have a radius well over 100nm.

Question 5:

How long does it take for a vacuole with a radius of 50nm = 5 × 10−8m to travel a
distance of 50µm in the same condition as in the previous question?

Some of our neurones extends from our brain all the way to our toes.

Question 6:

How long does it take for a tubulin protein to freely diffuse from the very top of the cell
in our brain to its very bottom in our toe assuming a total length of 2m and the same
condition as in question 4? Convert the result in a familiar unit to understand how big
it really is.

The diffusion equation is relatively easy to solve when D is constant and when there are
no boundaries. In real situations, like in cells, the domain is bounded and D might also be a
function of the position in the cell. Solving the diffusion equation analytically is then much
harder and in most realistic cases impossible. Nothing is lost as one can solve it numerically.

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 3

Another weakness of the diffusion equation is that it only gives us a probability distribu-
tion of the diffusion of a particle and it does not really tell how a particle actually moves.
A method one can use to study diffusion is to perform simulations and this happens to be
quite simple to do. We will restrict ourselves to the diffusion in one dimension, but is it very
easy to generalise it to 2 or 3 dimensions.

First we chose a time step dt which is the time scale over which we want to study the
diffusion (we are not interested in the detailed movement for shorter time scales). We then
remember that the typical distance dx travelled during the interval dt is given by dx =√
2Ddt. The simulation then proceeds as follows:

• We set the particle at its initial position, say x = 0.

• We chose dt = 0.001 (to make the motor step much smaller than the bin size of a
histogram we will create later).

• We define dx =
√
2Ddt.

• We take a uniformly distributed random number, rnd, in the interval [0, 1].

• If rnd > 0.5 the particle moves to the right by dx: x→ x+ dx.

• If rnd < 0.5 the particle moves to the left by dx: x→ x− dx.

• we increment the time : t→ t+ dt.

We repeat step 2 to 5 as many times as needed.
The python implementation of the algorithm is given in the file diffusion 1d.py

1 import math
2 import random
3

4 # Set the parameter of the problem.
5 dt =0.001 # simulation time increment
6 D=0.5; # diffusion coef
7 tmax = 100
8

9 def diffuse(t_max):
10 """ Simulate the diffusion of a particle.
11 Randomly move right or left by fixed step. Stop when t=t_max
12 and return the position reached.
13 Uses global variables D and dt
14 """
15 x = 0.0
16 dr = math.sqrt (2*D*dt)
17 # Evolve
18 t =0;
19 while (t < t_max): # diffuse until tmax
20 rnd = random.random () # a random number between 0 and 1
21 direction = 1 # default: move right
22 if(rnd < 0.5):
23 direction = -1 # move left (50% chance)
24 x += direction*dr
25 t += dt
26 return(x)
27

28 # Solution
29 import numpy as np
30 import matplotlib.pyplot as plt
31

32 Nmax = 10000
33 Nbins = 50
34

35 x = []
36 ##### TO DO ############
37 # execute the function diffuse(tmax) Nmax time and append the results
38 # in the list x
39 ########################
40

41 # Produce a histogram of the collected data in x

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 4

42 # bins: the list of x values of the center of the histogram bins
43 n, bins , patches = plt.hist(x, Nbins , normed=1, facecolor='green ', alpha =0.5)
44

45 ##### TO DO ############
46 # Plot the theoretical solution d(tmax) of the diffusion equation
47 # on top of the hyitogram produced above
48 # bins is a list of x value for the center of the bins
49 ########################
50

51 plt.xlabel('X')
52 plt.ylabel('Probability ')
53 plt.title(r'$\mathrm{Histogram\ of\ Diffusion :}$')
54 plt.grid(True)
55

56 plt.show()

The function diffuse(t max) performs the simulation from t = 0 until t max and returns
the position of particle at that time. By executing this function many times, we can deter-
mine how far the particle has travelled within the chosen time and compare the histogram
with the solution of the diffusion equation.

Notice that to generate a random number, we use the python function random.random(),
from the module random, which return a uniformly distributed random number in the inter-
val [0, 1]. The number returned will be different each time (try it) as well as each time you
run your program.

Coding task 1:

Modify the file diffusion 1d.py to make it a fully working program and proceed as
follows:

• Below line 30, add a loop to execute the program Nmax times and add the result
returned by diffuse(t max) to the list x.

• Notice that line 36 produce a histogram of the value stored in the list x. It returns
3 values, but the only one we are interested in is the list returned in bins which is
the x coordinates of the centre of the bins used for the histogram. The histogram
is normalised so that it can be interpreted as a distribution.

• Below line 42, add some code to compute the values of the theoretical solution
(2) where you must take t = tmax and use those values to generate a plot of the
(2), as a red line, on the same figure as the histogram, performed in line 36 (just
add the figure to plt). Use the values returned in bins to evaluate (2).

• Program output: a histogram of the generated data (in green) and on the same
figure the theoretical curve for the distribution (in red).

Question 7:

Run the program diffusion 1d.py and save the figure it generates. How good is the
simulation compared to the theoretical solution?

We have used the solution of the diffusion equation to compute the typical time it takes
for a particle to cover a distance x, but what is the average time it takes a particle to travel
such a distance?

Coding task 2:

To answer that question, make a copy of the program diffusion 1d.py and call it
diffusion 1d avt.py and modify it so that it computes the average time needed to
travel a specified distance.

• Modify the function diffuse so that it takes x max as an argument and so that the
loop stops when x > abs(x max). It must return the time t when the particle has
reached the distance x max.

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 5

• The code below the definition of diffuse must execute the function diffuse
10000 times to compute the average time <t>.

• Include the loop that calculate the average time in another 2 loops to compute the
average travel time for D = 0.5, 1 and 2 as well as x max=1., 2., 3., 4. and 5.

• The program must output the following values:

x_max <t> D t_theory

for each value of D and x max (15 lines of output in total). t theory is the ex-
pression which you believe to be the theoretical value for <t> (you can run your
program without it the first time to guess what this might be).

• Program output: a title line followed by the 15 lines of data described above.

Question 8:

Create a table with the data generated by diffusion 1d avt.py, from coding task 2,
and explain what the expression for the average travelling time < t > is.

Question 9:

When we considered the diffusion of a protein in a neurone, we assumed that it was
diffusing on a infinite line when, in reality, it diffuses inside very thin cylinder, the neu-
rone, starting at one end and ultimately reaching the other extremity. Is the diffusion
in a finite domain different than in an infinite domain? Is the answer we obtained in
question 6 correct or does it need to be corrected for a finite box?

4 Motor

Diffusion is not a very effective transport method for long distances. Nature has thus
designed an active transport method which is faster. Watch the video of ref [5] to obtain a
visual description of motors as well as some information on various biological concepts.

Motor proteins exhibit a random dynamics and are fuelled by chemical energy. Once
they are attached to their cargo and their walkway (microtubules or actin filaments), they
walk one step at a time but can also detach from the walkway or the cargo. The time
between steps is random and distributed according to a Boltzmann (Poisson) distribution
characterised by a rate which we will call k+(FD). The detachment is also random and
given by a Boltzmann distribution and rate kd. We should also point out that the 2 events
can be considered independent of each other.

4.1 A simple model

One can simulate the movement of a motor protein using a so call Monte Carlo simulation:

• One computes the time the next step will take place using

tstep = log(rnd)/k+(FD) (10)

where rnd is a random number uniformly distributed in the interval [0, 1].

• One computes the time the next detachment will take place

td = log(rnd)/kd (11)

where rnd is another random number uniformly distributed in the interval [0, 1].

• If tstep < td, the motor moves by one step and the time variable t is increased by tstep.

• If td < tstep, the motor detaches and the time variable t is increased by tstep.

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 6

• One then repeats the procedure above until motor detaches.

It can be shown, but this is beyond the scope of this course, that the algorithm above simu-
lates events described by Poisson distributions. The algorithm is implemented by the func-
tion evolve in the program motors.py.

When a motor pulls a cargo, which we will assume to be spherical, the cargo is subjected
to resistance forces due to the fluid in which they are immersed. Stokes showed that the
force is given by

FD = 6πηrv (12)

where one recognises, partly, the denominator of eq (9), so η is the viscosity of the cytosol
(fluid inside the cell), r the radius of the cargo and v the speed at which the cargo moves in
the cytosol.

As one would expect the rate k+(FD) decreases when FD increases and the detachment
rate increases with FD. This was studied in detail by Kunwar et al. [6] who found

k+(F) =
v

d

(
1−

(
F

Fstal

)1/2
)

(13)

and

kd = {
kd0e

F/Fd (F ≤ Fstall)
kd0

0.254(1−e−F/λF)
(F ≥ Fstall)

(14)

where

• kd0 ≈ 1/s : detachment rate under zero load

• Fstall = 1.25pN = 1.25× 10−12N : stall force for dynein

• Fd ≈ 0.87pN = 8.7× 10−13N : detachment force

• λF ≈ 1.97pN = 1.97× 10−12N

• d = 8nm = 8× 10−9m : motor step

• vM = 0.85µm/s = 8.5× 10−7m/s : average motor speed (dynein)

• kBT = 4.14−23J : at a temperature of 300K.

Coding task 3:

The program motors.py simulates the movement of a motor, but a few parts must be
completed:

• Complete the definition of the function F load(self,R) so that it corresponds to
the Stokes force (12), using the parameter already defined in the function init
of the class. Use the value vM in the list above for v.

• Complete the definition of the function kp so that it corresponds to k+(F) in eq
(13).

• Complete the definition of the function kd so that it corresponds to kd in eq (14).

• Complete the definition of the function average attached time

• In the code below the class definition, use the function average attached time to
compute the average detachment time for a cargo of radius 1× 10−7m.

• Add some code to generate the following 2 figures

– The average detachment time t as a function of the cargo radius r.
– The average displacement, x, before detachment as a function of the cargo

radius r.

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 7

Scan the radius from 0.1µm = 10−7m to 60µ = 6 × 10−5m using circa 200 data
points.

Program output: 3 figures one after another:

• figure 1 : a typical trajectory of a motor (lasting at least until 1 = 1)

• figure 2 : Average detachment time as a function of cargo radius.

• figure 3 : Average displacement as a function of cargo radius.

Question 10:

Run the program motors.py and save the 3 figures it generates:

• The first figure represents the typical trajectory of a diffusing particle or radius
100nm = 1×10−7m and is created by the function call mot1.evolve(r,0.01,True).
Run it a few times and chose one when the motor remains attached for at least 1s.

• The other two figures are the one you have to encode yourself for coding task 3.

Question 11:

When a motor detaches from the microtubule or the actin filament, it usually re-attach
itself rapidly or another motor pulls the cargo along the same track. If we assume that
the re-attachment is instantaneous after detachment, what is the critical distance dcrit
for which the average speed of motor transport is the same as the average speed due to
diffusion for a vacuole of radius 50nm = 5× 10−8m?. Should vacuoles of 50nm radius
be diffusing or should they rather be transported by motors?

4 References

[1] T.D. Pollard, W.C. Earnshaw, J. Lippincott-Schwartz, Cell Biology, ISBN :
9781416022558

[2] http://www.biologymad.com/resources/Ch%201%20-%20Cells.pdf

[3] http://web.mit.edu/biophysics/sbio/PDFs/L15 notes.pdf

[4] Some derivation of the diffusion equation: http://mathbench.umd.edu/modules/
cell-processes diffusion/page09.htm, https://en.wikipedia.org/wiki/Fick’
s laws of diffusion

[5] A movie about transport in the cell: http://www.ibiology.org/ibioseminars/
cell-biology/ron-vale-part-1.html

[6] A. Kunwar et al. Mechanical stochastic tug-of-war models cannot ex-
plain bidirectional lipid-droplet transport. PNAS (2011) 108, 18960-18965
doi:10.1073/pnas.1107841108

5 To submit:

• One pdf file for the essay, including the figures for questions 7 and 10.

• Python code 1: diffusion 1d.py

• Python code 2: diffusion 1d avt.py

• Python code 3: motors.py

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 8

http://www.biologymad.com/resources/Ch%201%20-%20Cells.pdf
http://web.mit.edu/biophysics/sbio/PDFs/L15_notes.pdf
http://mathbench.umd.edu/modules/cell-processes_diffusion/page09.htm
http://mathbench.umd.edu/modules/cell-processes_diffusion/page09.htm
https://en.wikipedia.org/wiki/Fick's_laws_of_diffusion
https://en.wikipedia.org/wiki/Fick's_laws_of_diffusion
http://www.ibiology.org/ibioseminars/cell-biology/ron-vale-part-1.html
http://www.ibiology.org/ibioseminars/cell-biology/ron-vale-part-1.html

	Assignment Description
	Introduction
	Diffusion
	Motor
	A simple model

	To submit:

