
Mathematical Modelling II, Durham University

Normal modes

1 Assignment Description

These assignment sheets describe the modelling of strings like guitar and piano strings.
They provide a brief description of the topic and set problems some of which must be solved
using python programs.

The assignment consists in writing an essay that contains an answer to each question and
which expand on the material included in these notes. The references are there to provide
you with extra source of information and they are not exhaustive.

The essay must be readable on its own without reference to the assignment sheets. The
essay must not necessarily follow the same order as the notes and does not need to answer
the questions in the same order either. As a matter of fact using a different structure and
order is a bonus. Do describe the interpretation or consequences of the results that you
obtain. We also expect you to focus more on some aspects of the material presented in
these notes. This could be a more detailed discussion of the derivation of the equations or
algorithm described in the notes or to better explain the interpretation of the results. You
can also solve problems which are not set and which answer some further questions that
you might have.

Some part of the assignment sheet will need to be included in your essay, but do not copy
these section verbatim, use your own words. The equations do not need to be changed, but
you can provide more detailed explanations or derivations when appropriate.

You have to submit 3 files: 1 pdf file for the essay and 3 python programs. We advise
you to typeset your essay in LaTeX but this is not compulsory.

The essay must have a maximum of 12 pages (using as a reference the provided LaTeX
style file).

2 Introduction

In these notes we model the vibration of strings showing the difference between thin
strings, like guitar strings, and thick string, like piano strings. We start by modelling the
longitudinal and then transversal vibration of masses connected by string and then show
that this is a good approximation to model strings. We also model strings using partial
differential equations.

3 Masses and springs

We start by considering a simple example of N nodes of mass mi connected by springs
of elastic coefficient k. The end spheres are both connected to fixed walls. The masses are
at the position Xi while the walls are located at the fixed positions X0 and XN+1.

k m

x x0 1 x2 xN xN+1

Figure 1: N masses connected by springs.

If the elongation at rest of each spring is d (the length of each spring when not connected
to any mass), then the force acting on each mass i located at Xi is given by

Fi = k(Xi+1 −Xi − d)− k(Xi −Xi−1 − d) = k(Xi+1 +Xi−1 − 2Xi) (1)

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 1

and the equation for these masses is given by

mi
d2Xi

dt2
= k(Xi+1 +Xi−1 − 2Xi) i = 1, . . . , N. (2)

When the system is at rest, dXi/dt = d2Xi/dt
2 = 0, the distances between the masses will

be equal to

l0 =
XN+1 −X0

N + 1
. (3)

Notice that in general l0 will be different from d. We can then perform the change of variable

Xi = X0 + il0 + yi (4)

where the yi describe the displacement of the masses with respect to their static configura-
tion. Substituting (4) into (2) we obtain

mi
d2yi
dt2

= k(yi+1 + yi−1 − 2yi) i = 1, . . . , N (5)

where y0 = yN+1 = 0.
Equation (5) can be written in matrix form as

ÿ = kM−1Ay (6)

where

M = diag(mi), A =

−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
.
. 0 1 −2 1 0
. 0 0 1 −2 1
. 0 0 0 1 −2

. (7)

To solve this system of equations we seek very special solutions of the form

yµ = vµ sin(ωµt), (8)

where µ, or other Greek indices, labels the solution, not the vector components, and after
inserting (8) into (6) we have to solve the algebraic equation

−ω2
µvµ = kM−1Avµ. (9)

This is an eigen value problem which can easily be solved. As A is an N by N matrix, there
are exactly N solutions.

The solutions of type (8) are called the normal mode solutions of (5) and notice that
they do correspond to solutions where all the masses oscillate at the same frequency. The
ωµ are called the angular frequencies, while the frequencies of oscillations are given by
νµ = ωµ/2π.

Mathematically, as (9) is linear, the norm of the eigen vector vµ are arbitrary (they can be
multiplied by any number) and they correspond to the amplitude of motion of the masses.
(In reality, if the amplitude is too large, equation (2) stops being valid, the springs would be
permanently damaged for example). When one computes the normal modes, it is common
and convenient to chose the amplitudes so that

(vµ.vµ) = |vµ|2 = 1. (10)

Notice also that A is symmetric: A = At. If all the mi are identical, then M is a multiple
of the identity matrix and C = kM−1A is also symmetric and, as a result, the eigen vector
v are orthogonal to each other. Indeed,

vtρCvµ = −ω2
µv

t
ρvµ, (11)

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 2

and as C is symmetric,

vtρCvµ = (vtρCvµ)t

= vtµCvρ

= −ω2
i v

t
µvρ

= −ω2
jv

t
ρvµ. (12)

So (ωρ − ωµ)(vρ.vµ) = 0 and if ωρ 6= ωµ, then (vρ.vµ) = 0. Sometimes, a system can have
multiple normal frequencies, i.e. we can have 2 eigen vectors with the same frequency. In
that case, we have a plane of solutions with the same frequency and we can always pick 2
vectors that are perpendicular to each other.

If all the normal vector vj satisfy (10) they form an orthonormal base of RN .
Another property of (6) is that any linear combination of its solutions is also a solu-

tion. We can thus generate a very large class of solutions by taking the most general linear
combination of the normal modes:

Y(t) =

N−1∑
µ=0

aµ sin(ωµt+ φµ)vµ (13)

where aµ are constants. One can prove that all solutions of (6) can actually be written as
(13) and so the special solutions we have computed allow us to compute the most general
solutions.

Equation (6) is normally solved as an initial value problem, meaning that given Y (t = 0)
and dY

dt (t = 0) the solution is uniquely determined.
Then, using the orthogonality of the eigen vectors, we see that

(vρ.Y) =

N−1∑
µ=0

aµ sin(ωµt+ φµ)(vρ.vµ)

= aρ sin(ωρt+ φρ) (14)

and

(vρ.Ẏ) =

N−1∑
µ=0

aµωµ cos(ωµt+ φµ)(vρ.vµ)

= aρωρ cos(ωρt+ φρ). (15)

Evaluating (14) and (15) at t = 0 gives us a system of 2N equations with 2N unknowns, aρ
and φρ, which has a unique solution.

Coding task 1:

eigen val.py:

Write a python program, called eigen val.py, to compute the normal frequencies and
the normal modes of equation (5) when all the masses are equal, mi = m. You actually
need to solve equation (9). The function linalg.eig from the numpy library take a
square matrix as its argument and computes its eigen values and eigen vectors. The
function returns a pair of array Ev,V where Ev is the list of eigen values and V a square
array where column l is the eigen vector corresponding to the eigen value Ev[l], or,
more explicitly, the eigen vector vµ is given by V[:,mu-1] and the corresponding eigen
value λµ by Ev[mu-1] (we label the eigen vectors starting at µ = 1 but python starts at
0).

The eigen values returned bylinalg.eig are not ordered, but the following code

1 (Ev , V) = np.linalg.eig(C)
2 idx = Ev.argsort ()[::-1]
3 Ev = Ev[idx]
4 V = V[:,idx]

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 3

computes the eigen values λµ and eigen vectors vµ of C, i.e. satisfying Cvµ = λµvµ,
(where in our case λµ = −ω2

µ).

The code above saves the eigen values in Ev in decreasing order and orders the corre-
sponding eigen vectors in V. Notice also that the eigen vectors, V, returned by numpy are
normalised to 1.

Use two variables to store the values of k and m at the beginning of your program. The
program must be written to work for any values of these parameters but take k = 1,
m = 1 for the requested output. Use a system of N = 201 masses.

The program must then compute all the frequencies νµ =
√
−λµ/2π as well as the ratio

νµ/ν0 where ν0 is the lowest frequency. This is to check if the frequencies are multiple
of each others.

The program must generate the following output.

• a figure vµ, as a function of the node index i. (Each vµ is a vector of size n whose
components are labelled by the index i). The figures must show the amplitude of
displacement, vµ,of the 7 lowest frequencies (7 lowest smallest µ), on the same
figure but in different colours. Notice that by (8), vµ[i] = yµ(t = 1/4νµ)[i],
corresponding to the largest displacements of the mass at Xi = X0 + il0.

• a second figure (once the first one is closed) showing the following two functions:
1) νµ/ν0 (in blue) as a function of the eigen value index µ, where ν0 is the lowest
normal frequency. 2) the identity function µ (in red) (both starting with µ = 1).

• The program must also output on the screen the difference between the computed
frequencies, νµ, and the integer multiple of the lowest frequencies, µν0, expressed
in cent, for the lowest 20 frequencies. (See section 5.4 in [4] or section 6.2 below
for the definition of a cent).

3.1 Transverse vibrations

We will now consider the same system as above but where the masses move transversally
in the y direction while their x coordinate remains unchanged. Assuming that the fixed
horizontal distance between nodes is l0 = xi+1 − xi for all i and that the relative transverse
displacement, yi+1 − yi, are much smaller than l0, the potential energy is then given by

V =
k

2

N∑
i=0

(
(l20 + (yi+1 − yi)2)1/2 − d

)2
(16)

≈
N∑
i=0

(
v0 +

κ

2
(yi+1 − yi)2

)
(17)

and the equations for yi are then

mi
∂2yi
∂t2

= −∂V
∂yi

= κ(yi+1 + yi−1 − 2yi) (18)

with y0 = yN+1 = 0.

Question 1:

Derive the expression for the potential V , (16), and its approximation as a quadratic
function (17) where one must assume that yi+1 − yi << l0 and yi+1 − yi << l0 − d.
Determine the expression for κ and v0. Detail the computation of ∂V

∂yi
in (18).

We note that equation (18) is identical to equation (5) except for the coefficient in front
of the spatial derivatives. This means that, if the springs are stretched, the longitudinal
and transversal displacements of the masses obey the same equation but with different
coefficients.

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 4

Question 2:

What is the physical condition that the string must be subjected to before it can vibrate
(hint: look at equation (18) after having determined κ).

If the number of masses is very large, this system can be used to approximately model a
guitar string.

4 Guitar string

If the number of nodes is very large, we can take the continuum limit of eq (5) or (18)
to transform it into a partial differential equation. To do this, we assume that the end points
are fixed, X0 = 0, XN+1 = L so that l0 = L/(N + 1) and so l0 decreases as N increases. We
also define xi = il0 as the rest position of the nodes. If we assume that the displacements
yi = y(xi) do not vary too much between nodes, we can use the following approximation:

y(xi + l0) = y(xi) + l0
∂y

∂x
+
l20
2

∂2y

∂x2
+
l30
6

∂3y

∂x3
+ o(l40)

y(xi − l0) = y(xi)− l0
∂y

∂x
+
l20
2

∂2y

∂x2
− l30

6

∂3y

∂x3
+ o(l40) (19)

Substituting (19) into (18) and assuming all the mass identical, mi = m, we obtain

∂2y

∂t2
=
κl20
m

∂2y

∂x2
+ o(l40). (20)

which we rewrite as

∂2y

∂t2
= c2

∂2y

∂x2
(21)

where

c = l0

√
κ

m
. (22)

Question 3:

Solve equation (21) using the method of separation of variables, proceeding as follows.
Write y = g(t)f(x) and substitute this into (21). Compute the most general solution
for g(t) and f(x) when imposing the condition that f(0) and f(L) = 0. Determine all
the values that the angular frequency ωn can take. What is fn(x) for each of these ωn?
Write down the normal mode frequencies νn = ωn/2π.

Like the normal modes of the discrete equation (5), the normal modes of (21) are or-
thogonal to each other. The proof is the same as for equation (5) except that to compute the
scalar product between 2 functions fi(x) and fj(x), we must compute the integral

< fi.fj >=

∫ L

0

fi(x)fj(x)dx. (23)

We then use the fact that d2fi(x)
dx2 = −ωifi(x), and we show that∫ L

0

fi(x)
d2fj(x)

dx2
dx =

∫ L

0

d2fi(x)

dx2
fj(x)dx (24)

by integrating by part twice and by using the boundary condition imposing that at all the
fi(x) vanish at x = 0 and x = L.

We have shown above that the continuum limit of eq (18) is the so called wave equation
(21). The opposite is true as well: equation (18) can be seen as a discretised version of

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 5

the wave equation (21). As we have seen, the wave equation is easy to solve when c is a
constant, but when it depends on x, the problem is much harder to solve.

When this is the case, one can solve the equation numerically by noticing that eq (18) is a
system of ordinary differential equations. In this project we will restrict ourself to constant c
or k, but the programs we will write would be very easy to modify to consider more general
and more complex cases. We will now consider a string with both ends fixed, y = 0, at
x = 0 and x = L, and approximate it as N masses connected by springs. We can then find
approximate solutions of (21) by solving (18) with

mi = 1, κ =
c2

l20
, l0 =

L

N − 1
. (25)

Equation (21) is what is called an initial value problem. One can prove that to solve it
uniquely, one needs to know the initial profile of the string, y(x, t = 0), and its initial speed,
ẏ(x, t = 0). When a guitar string is pinched, it is stretched into an approximately triangular
shape (which we will consider more later). The triangular shape gives us y(x, t = 0) and as
the string is simply released ẏ(x, t = 0) = 0 everywhere. A piano string on the other hand
is hit by a hammer. In that case, y(x, t = 0) = 0 everywhere and ẏ(x, t = 0) is a bell shape
function around the point of impact of the hammer.

Question 4:

Convert the system of N second order differential equations (18) into a system of 2N
first order differential equations.

Coding task 2:

OdeString.py:

Write a computer program that solves the system of ODE (18) numerically using the
module ode rk4.py (this extended version of the module used for the electron problem
is described in section 6.3.) We will do this to model a guitar or harpsichord string and
thus use the parameters (25) and take c = 329.6m/s, L = 0.63m.

The code you will write is similar to the one you have already written for the electron
problem except that the number of equation is not fixed but depends on the number of
points we decide to consider.

To write the code, edit the provided file OdeString.py and proceed as follows:

• Notice that the init function already sets some useful parameters: the class
variable dx is nothing but l0 and dt is also set correctly.

• Complete the function reset(self,t,y,doty) to set the initial condition. y is the
initial value for yi and doty the initial value for dyi

dt . The class variable self.v
must be an array of 2N elements. The first N values of self.v must be the values
of y0 to yN−1 and the last N values must be dy0

dt to dyN−1

dt . Use numpy arrays of
type dtype=’float64’ for better accuracy.

• Complete the function f(self,t,v) describing the equation using the answer from
question 4. Instead of using loops to compute the right hand side of the equation,
use the indexing functionality of the numpy library described in section 6.4.2 below.
Notice also that the end points do not move: d2y0/dt2 = d2yn−1/dt

2 = 0. So the
values F for these 2 points must be set to 0.

• Below the class definition, set the initial values of L and c.

• Create an object of type StringOde.

• Create the initial value, at t = 0 ,for y and ẏ, taking y(x) = sin(πx/L) and
dy/dt(x) = 0, where x ∈ [0, L]. Which of the normal mode computed in ques-
tion 3 does this correspond to?
Notice that the class variable dx is the distance between nodes which should be
used to computes the x coordinates, ranging from 0 to L, of the lattice points.

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 6

• Call the class function reset() to copy the initial conditions into the StringOde
object.

• Call the class function solve until() with the parameters tmax and fig dt already
initialised in the program.

• Add some code to generate on the same figure the profile y(x) at t = 0 (in black),
t = T/10 (in red), t = 2T/10 (in green),t = 3T/10 (in blue), t = 4T/10 (in
magenta) and t = 5T/10 (in cyan) where T is the period set in the template
program.

• Add some code to plot the function y(L/3, t) as a function of time, to be displayed
as a second figure when the first one has been closed. t must range from 0 to 20T .
Hint, use the plot function of the OdeRk4 class.

• Add some code to compute the Fourier transform of the vibrating string proceed-
ing as follows:

– Add a function called FFT mod(self,x) to the class StringOde. It must com-
pute the modulus of Fourier transform (

√
a2i + b2i) of the time function y(x, t)

for the given x, using the values stored in the class OdeRk4 variable l f. As
y(x, t) is real we only want to return the values corresponding to the positive
frequencies (see the FFT project). The number of data points does not need to
be a power of 2. The function must return the result,

√
a2i + b2i in increasing

value of i, as a numpy array.
– Add a function called plot modfft(self,modFFT,freq max) which plots the

positive defined array modFFT, which will be an average values of modulus
of Fourier transform, as a function of the frequency (which you can compute
using np.fft.fftfreq). Only plot the frequencies up to freq max and use the
function loglog to plot a logarithmic plot of both argument.

– At the end of OdeString add some code calling FFT mod 5 times with the argu-
ment x=L/13, x=L/17, x=L/23, x=L/31 and x=L/43, compute the average value
of the arrays returned by FFT mod and use plot modfft to plot that average.
Set freq max to 400Hz. Notice that if we compute the Fourier Transform only
at one point, we will miss all the normal modes which have a node at that
point. This is why we use a few points whose distance from the origin are not
multiple of each other.

Expected code output:

• A graphic of the profile y(x) at the 6 times specified above and in the specified
colours.

• A graphic, as a separate figure, of y(L/3, t) as a function of time from t = 0 up to
t = 20T where T = 2L/c.

• A logarithmic plot of the average modulus of the Fourier Transform of the vibrating
string averaged over the 5 position on the string described above.

Question 5:

Use the program OdeString.py to integrate equation (21) using the parameters and
the initial conditions specified in coding task 2.

a) Generate the profile y(x) at the time specified in coding task 2.

b) Generate the figure of f(L/3) as a function of t for the interval t ∈ [0, 20T].

c) Generate the logarithmic plot of the averaged modulus of the Fourier Transform
of the vibrating string.

d) The Fourier Transform for a normal mode should be zero for all frequencies except
the normal mode frequency. Why is the spectrum spread out?

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 7

Coding task 3:

eigen val guitar.py :

Make a copy your program eigen val.py, calling it eigen val guitar.py, and modify
it so that it computes the spectrum of a guitar string by solving the eigen value problem
resulting from eq (21). For this you must set the mass m = 1 and add a new variables
L and c for the length and rigidity of the string. Take L = 0.63m and c = 329.6m/s,
compute dx=L/(N+1) and set κ = c2/dx2.

The program must generate the same 2 figures as in coding task 1. It must also output
on the screen

• The lowest 20 frequencies of the string.

• The difference between the computed frequencies, νj , and the integer multiple of
the lowest frequencies, jν0, expressed in cent, for the lowest 100 frequencies.

Question 6:

• As equation (5) is an approximation of (21) we can expect the normal frequencies
of (9) to match the normal frequencies obtained in question 3, but there are differ-
ences between the two and, for a given frequency, that difference decreases when
the number of points N increases. What is the minimum number of points, using
only multiple of 100, that you must use so that the lowest 100 frequencies are
within 10 cents of an integer multiple of the lowest frequency? A cent is defined
and explained in section 6.2.

• Which value do you get for the lowest frequency of the string. Use the same
number of points as the one found in the previous question. How does that value
compare with the lowest frequency found in question (3) ?

Question 7:

Use eigen val guitar.py to generate the 7 lowest normal mode profiles using the pa-
rameters specified in that coding task. On a second figure plot the frequencies of the
normal mode, as a function of the normal mode index, for the discretised string, com-
puted using for N the value found in question 6, (in blue) as well as the expected
spectrum for a guitar string in (red).

The initial condition we have used in coding task 2 is simple mathematically, but as a
matter of fact very hard to excite on a guitar. When a guitar string is plucked, it is pulled by
the finger of the player to form a triangular shape and then it is released suddenly. Here is
how to simulate this excitation of the guitar string:

Coding task 4:

Make a copy your program OdeString.py and call it OdeStringPlucked.py.

• Set the initial value for y so that it correspond to the triangular shape taken by a
guitar string when it is plucked, using

y(x) =

{
3
Lx 0 ≤ x ≤ L

3
3
2 (1− x/L) L

3 ≤ x ≤ L.
(26)

Keep ẏ(x) = 0.

• Set N to the number of points found in question 6

• Modify the function so that it plots the profiles at the times 10*T, 10*T+2*T/10, ...
10*T+5*T/10.

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 8

Question 8:

Use the program OdeStringPlucked.py to create figures of snapshots of the profile
of the guitar string at the same times set in coding task 4, as well as the function
y(x = L/3, t) corresponding to the vibration of the string at x = 3/L.

• Using N = 900 as well as c and L as above, generate the 2 figures set in coding
task 4: a) the profile y(x) at t = 0, T/10, 2T/10, 3T/10, 4T/10, 5T/10. b) y(L/3, t)
from t − 0 until T = 20T where T = 2L/c. Generate the same 2 figures with
N = 100.

• What are the main differences between the evolution of the plucked profile com-
pared to the evolution of the normal mode? (Look at the solution for N = 900
which is a very good approximation of the solutions of eq (21).)

• The analytical solution of equation (5) with the plucked initial condition can be
easily computed using the solutions of this equation described in sec 3.2 of [4]
and one expects the solution to be fully periodic in t. For small N the solution
is not periodic any more. Can you explain why using the results of question 6?
(The time integration of equation (5) is very accurate and can’t be blamed for the
results obtained here.)

5 Piano String

The equation for a piano string is slightly different from a guitar string. The difference
comes from the fact that the piano string is thicker and made out of metal. One thus has
to take into account the energy that one needs to bend it. The end result is the following
equation[3]

∂2f

∂t2
= c21

∂2f

∂x2
− c22

∂4f

∂x4
. (27)

Does the extra term proportional to c22 affect the spectrum of the string? To answer that
question we can approximate the equation above by a finite difference equation, and com-
pute the spectrum by solving the corresponding eigen value problem.

Question 9:

Derive the expression for the finite order approximation ∆4
i f of d4f/dx4 using the

5 points xi, xi±1, xi±2. Start by computing the Taylor expansion of f(x ± dx) and
f(x±2dx) up to the 5th order. Combine the obtained expression to express d4f/dx4(xi)
as a linear combination of fi, fi±1 and fi±2.

Replacing d2f/dx2 by ∆2
i f , given by (37), and d4f/dx4 by ∆4

i f in (27) we obtain

∂2f

∂t2
= c21∆2

i f − c22∆4
i f. (28)

The equation can then be written in matrix form as

∂2f

∂t2
=

c21
dx2

(A2 +B2)f − c22
dx4

(A4 +B4)f (29)

where A2 and A4 are the matrix representation of the finite difference expression of re-
spectively d2f/dx2 and d4f/dx4 while B2 and B4 are boundary terms. Notice also that dx
is the lattice spacing. The two ends of the piano strings are both fixed, which means that
f0 = fN+3 = 0. One must also impose the condition that d2f/dx2 = 0 at the end of the
string. This is called an hinged boundary condition. In finite difference terms this means
that f0 − 2f1 + f2 = 0 and this is encoded in the 2 boundary matrices B2 and B4 bellow. A2

is identical to (7). Notice that the finite difference equation (28) does not make sense for
f0, f1, fN+2 and fN+3, but these functions are all determined by the boundary conditions.

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 9

Question 10:

Write down the expression for the matrices A4. (You can write it for N = 11, i.e. as a
7× 7 matrix)

The matrices B2 and B4 then take the following form:

B2 =

1
2 0 0 0 0
0 0 0 0 0
.
. 0 0 0 0 0
. 0 0 0 0 1

2

 (30)

B4 =

−2 0 0 0 0
2 −1 0 0 0
0 0 0 0 0
.
. 0 0 0 0 0
. 0 0 0 −1 2
. 0 0 0 0 −2

(31)

(32)

Coding task 5:

Make a copy your program eigen val.py, calling it eigen val piano.py, and modify it
so that it computes the spectrum of a piano string by solving the eigen value problem
resulting from eq (29). At the bottom of eigen val piano.py add some code to plot the
inharmonicity (in cent) of the first 100 normal modes of the piano string as a function of
their frequency ν. (Use the pyplot function semilogx). Use for N the value determined
in question 6. Be careful to compute dx correctly using L and N (it is different from
the guitar case).

In [2], the values of c1 and c2 are given for a few piano string and for the note C4 we
have c1 = 329.6m/s, c2 = 1.25m2/s and the length of the string is 0.63m.

The program must generate the same 2 figures as in coding task 1. It must also

• Generate a figure of the inharmonicity of the piano string normal modes (in cent),
for the first 100 normal modes, as a function of their frequency.

• Print on the screen the smallest frequency which is more than 100 cents of out
tune as well as its frequency index (the lowest frequency has index 1).

Question 11:

Use the number of nodes obtained in question 6 to ensure that the values of the lowest
100 frequencies of equation 9 are within 10 cents of the corresponding frequencies of
equation 21.

a) Using the values for c1 and c2 above, compute the frequencies, ν, of the normal
modes of the C4 piano string. Then plot on the same figure the 100 lowest fre-
quencies of the string, in blue, as well as the 100 first multiples of the lowest
frequencies in red as a function of their index number.

b) Plot the inharmonicity of the string expressed in cent as a function of the fre-
quency, ν, of each node and use a logarithmic scale for the frequency ν = ω/2π.

c) What is the frequency of the normal mode which is detuned by 1 semi tone and
what is it index number (the lowest mode being counted as number 1).

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 10

Question 12:

The result of question 11 might be surprising and some experimental values of the
normal frequencies of piano strings can be found in [3].

So is the piano string inharmonic? Would one expect a piano string to sound out of
tune and why does it not?

To answer this question, you can copy the program OdeStringPlucked.py into a file
called OdeStringHit.py and change in it the initial condition by setting y(x, t = 0) = 0 and
dy/dt(x, t = 0) = exp(−((x − L/3)/0.05)2). This corresponds roughly to a string being hit
by a piano hammer.

You can then use the program OdeStringHit.py to create a figure of the modulus of
the Fourier coefficients, averaged over a few points, as a function of the frequency, setting
freq max to 20000Hz. This corresponds to a guitar string that is hit like a piano string. While
the equation is not exactly the same as the piano string equation, the relative amplitude of
the excited mode will be a good estimate for a real piano string.

6 Some Useful Material

6.1 Finite differences

To derive a finite difference expression to approximate a differential operator, one must
use the Taylor series. There are several way to do this and there are also several possible
answers, but if one tries to use the smallest amount of adjacent points, then the answer is
unique modulo some symmetry. For any derivative of order n we need at least n+ 1 points.

We assume that we have the sampled values fi of a function f(x) where fi = f(xi)
where xi = idx, for some dx and i ∈ [0, N] are integers. For the first derivative we need 2
points, so to approximate df/dx(xi) we should use fi and fi+1. The we use the fact that

fi+1 = f(xi + dx) = f(xi) + dx
df

dx
(xi) +O(dx2) = fi + dx

df

dx
(xi) +O(dx2) (33)

and so

df

dx
(xi) =

fi+1 − fi
dx

+O(dx) (34)

and we can write

df

dx
(xi) ≈

fi+1 − fi
dx

. (35)

Notice that we could also use fi−1 instead of fi−1.
For the second order derivative, we must take 3 points: xi−1, xi and xi+1. We then write

fi+1 = f(xi + dx) = f(xi) + dx
df

dx
(xi) +

dx2

2

d2f

dx2
(xi) +

dx3

6

d3f

dx3
(xi) +O(dx4)

fi−1 = f(xi − dx) = f(xi)− dx
df

dx
(xi) +

dx2

2

d2f

dx2
(xi)−

dx3

6

d3f

dx3
(xi) +O(dx4).(36)

Adding these 2 equations together, moving fi on the other side of the equation and dividing
by dx we obtain

∆2
i =

d2f

dx2
(xi) =

fi+1 + fi−1 − 2fi
dx2

+O(dx2). (37)

6.2 Musical Scale and Cent

The human hear likes sound which are periodic. Periodic sounds are made out of a su-
perposition of sine waves with frequencies which are all multiple of the lowest frequency.
Such sound are call harmonic. Sounds which are not harmonic are called inharmonic. Most

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 11

musical instruments produce harmonic sounds, the main exception being percussion instru-
ments. The detuning between 2 notes can be described by their frequency ratio or, like
musicians, using cents. The piano keyboard is split in section called octaves. An octave dif-
ference corresponds to a doubling of frequency. An octave is then split in 12 semi tones. If ν0
is the frequencies of the lowest notes, the other notes in the octave will have the frequencies
νi = ν0 2i/12. Notice that note 12 has the frequency ν12 = 2ν0. The semitone is then divided
in 100 intervals called cents. Their frequencies, within a given semitone, is given by

νi = ν1 2i/1200. (38)

A well trained hear can detect a frequency difference of about 5 cents and most adult
can easily spot a difference of about 25 cents.

To compute the cent difference between 2 frequencies ν1 and ν2 one can invert eq (38)
and find

i = 1200
log(ν1ν2)

log 2
. (39)

So, for example, the freuqency difference between 450Hz and 440Hz is 1200
log(450

440)

log 2 =
38.9 cents.

6.3 Module ode RK4.py

The python module ode RK4.py is identical to the one used for the electron project, except
that a couple of member functions have been added:

• solve until(self,tmax,fig dt): this function calls the function RK4 1step for as long
as t<tmax. It thus integrates the equation until the time t max. Moreover at regular
intervals it saves the function values in the class variable l f which becomes a list of
arrays containing the equation function values.

The corresponding times are saved in the function variable l t which is also a list. So
l t[i] is the time corresponding to the profile l f[i].

The functions values are saved every multiple of fig dt. If fig dt is an integer multiple
of dt, then l t[i] will be equal to i*fig dt, if not it will be the time nearest to it.

In the string program l f[i][0:N] will be an array with all the values of y(x) at the
time l t[i], while l f[i][N:] will be an array containing all the values of ẏ(x).

• plot(self,i,j,format="k-"): plots the function v[j] as a function of v[i] where j
and i counts the fields starting from 1 not 0. This is because when i or j are zero they
refer to the time. format sets the plot format for the figure. plot uses the data saved
in the class variables l t and l f.

For example if myode is an object of type ode RK4.py, myode.plot(0,1) plots the func-
tion v[0] as a function of time and myode.plot(2,5,"r-") plots v[4] as a function of
v[1].

Notice that plot() does not call the plt.show() function. This means that one can call
plot() several times to plot multiple functions on the same figure. It also means that
plt.show() must be called after one or more calls of plot() to display the result.

6.4 Computing with numpy

6.4.1 Evaluating functions for arrays

Using numpy, one can evaluate functions for a range of values quite simply. For example,
we we want to evaluate the function exp(cos(x2) + 3 ∗ sin(4x)) for 200 values of x ranging
from 0 to 2π all we need to do is

1 import numpy as np
2 x = np.linspace(0,np.pi ,200)
3 f = np.exp(np.cos(x*x)+3*np.sin(4*x))

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 12

6.4.2 Copying sub arrays

A common tasks when manipulating arrays is to copy one sub array into another one. One
can be tempted to do this using loops, but this can be quite slow. Instead, numpy has indexing
features which makes such manipulations quite fast and easy to write.

In the example below A and B are 6 component vectors and we compute the quantity
B[i] = A[i]+3*A[i-1]-A[i+1] for the index values for which this makes sense: i=1 to 4:

1 import numpy as np
2 A = np.array ([0,1,2,3,4,5])
3 B = np.zeros (6)
4 n = 6
5 B[1:n-1] = A[1:n -1]+3*A[0:n-2]-A[2:n]
6 print("A=",A)
7 print("B=",B)

Notice that each element sub-range correspond to exactly 4 elements: [1:n-1] corresponds
to the range 1,2,3,4, [0:n-2] to the range 0,1,2,3 and [2:] to the range 2,3,4,5.

In the example, below, we replace a square of values inside A by the values of B: A[1,2]=B[0,0],
A[2,2]=B[1,0], A[1,3]=B[0,1], A[2,3]=B[1,1].

1 import numpy as np
2 A = np.array ([[1 ,2 ,3 ,4] ,[5 ,6 ,7 ,8] ,[9 ,10 ,11 ,12] ,[13 ,14 ,15 ,16]])
3 B = np.array ([[10 ,20] ,[30 ,40]])
4 print(A)
5 print(B)
6 A[1:3 ,2:]=B = B
7 print(A)

6 References

[1] T.D. Pollard, W.C. Earnshaw, J. Lippincott-Schwartz, Cell Biology, ISBN :
9781416022558

[2] J. Bensa, S. Bilbao, R. Kronland-Martinet, J.O. Smith The simulation of piano string
vibration: From physical models to finite difference schemes and digital waveguides. J.
Acoust. Soc. Am. 114 (2003)

[3] H. Fletcher, E. Donell Blackham and R. Stratton Quality of Piano Tones J. Acoust. Soc.
Am. 34 (1962)

[4] Dave Benson Music: a Mathematical Offering. Freely downloadable from https:
//homepages.abdn.ac.uk/mth192/pages/html/maths-music.html

7 To submit:

• One pdf file for the essay, including the figures for questions 5, 7, 8, 11 and 12. Ensure
all your figures have axis labels which are not tiny. Give all your figures a caption
describing their content and refer to them in the text by number.

• Python code 2: OdeString.py

• Python code 3: eigen val guitar.py

• Python code 5: eigen val piano.py

Copyright © 2015-2016 Kasper Peeters and Bernard Piette; Durham University. 13

https://homepages.abdn.ac.uk/mth192/pages/html/maths-music.html
https://homepages.abdn.ac.uk/mth192/pages/html/maths-music.html

	Assignment Description
	Introduction
	Masses and springs
	Transverse vibrations

	Guitar string
	Piano String
	Some Useful Material
	Finite differences
	Musical Scale and Cent
	Module ode_RK4.py
	Computing with numpy
	Evaluating functions for arrays
	Copying sub arrays

	To submit:

