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Travelling	in	a	microscopic	scale	
	

Abstract	
	

In	this	essay	we	compare	the	effectiveness	of	the	two	kinds	of	transport	within	
cells:	the	passive	and	the	active	one.	We	do	this	by	computing	the	average	
time	it	takes	for	a	particle	to	travel	a	given	distance	by	diffusing	and	then	by	
moving	by	the	motor	protein	along	a	walkway.	

	
	
1 Introduction	

	
Cells	 are	 sometimes	 called	 the	 building	 blocks	 of	 life,	 since	 they	 are	 the	 smallest	

structural	and	functional	units	existing	on	their	own.	Their	functioning	has	been	one	of	the	
most	interesting	field	amongst	biologists.	For	example,	sometimes	some	molecules	have	to	
be	transported	from	one	region	to	another	within	the	cell.	But	one	can	ask,	how	could	a	large	
molecule	such	as	a	protein	be	transported	inside	the	cell?	This	could	be	done	by	two	methods,	
which	we	are	going	to	examine:	the	passive	diffusion	and	the	active	transport.		

	
	

2 Diffusion	
	

The	cell	is	under	collision	by	other	molecules,	hence	the	molecules	within	the	cell	are	
constantly	 being	 pushed	 from	 random	 directions.	 This	 is	 the	 result	 of	 the	 random	
displacements	of	its	molecules.	One	of	the	most	analytical	method	to	describe	this	action	is	
considering	the	density	𝐹 𝑥, 𝑦, 𝑧, 𝑡 	of	the	cell.	For	randomly	diffusing	molecules,		

	
𝜕𝐹
𝜕𝑡 = 𝐷

𝜕*𝐹
𝜕𝑥* +

𝜕*𝐹
𝜕𝑦* +

𝜕*𝐹
𝜕𝑧* ,																																																(1)	

	
where	D	is	a	constant.	This	can	be	separated	for	variables	𝑥, 𝑦, 𝑧:	
	

𝜕𝑓
𝜕𝑡 = 𝐷

𝜕*𝑓
𝜕𝑥* ,																																																															(2)	

	
with	similar	equations	for	𝑦	and	𝑧.	Deriving	𝑓	we	get	
	

𝑓 𝑥, 𝑡 =
1

2	 2𝜋𝐷𝑡	
𝑒5

67
89:										𝑡 > 0,																													(3)	

	
which	 is	 the	probability	of	 finding	a	particle	at	𝑥	 at	 time	𝑡.	One	can	prove	(2)	by	directly	
substituting	(3)	into	 2 :	
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𝜕𝑓 𝑥, 𝑡
𝜕𝑡 =

𝜕
𝜕𝑡 𝑒5

67
89: 2 𝜋𝐷𝑡 − 𝑒5

67
89: 𝜕

𝜕𝑡 2 𝜋𝐷𝑡

4𝜋𝐷𝑡 	
	
	

=
𝑒5

67
89: 𝑥*

4𝐷𝑡 2 𝜋𝐷𝑡 − 𝑒5
67
89: 𝜋𝐷

𝜋𝐷𝑡
4𝜋𝐷𝑡 ,	

	
which	if	we	simplify	we	get:	
	

= 𝑒5
67
89:

𝑥* − 2𝐷𝑡
8𝐷𝑡* 𝜋𝐷𝑡

																																																					(4)	

	
Evaluating	the	right	hand	side	of	(2):	
	

𝐷
𝜕*𝑓
𝜕𝑥* = 𝐷

𝜕
𝜕𝑥

𝜕𝑓
𝜕𝑥 	

	

= 𝐷
𝜕
𝜕𝑥 0 + 𝑒5

67
89:

−2𝑥
4𝐷𝑡

1
2 𝜋𝐷𝑡

	

	

=
−2

8𝑡 𝜋𝐷𝑡
	
𝜕
𝜕𝑥 𝑥𝑒5

67
89: 	

	

=
−2

8𝑡 𝜋𝐷𝑡
		
𝜕𝑥
𝜕𝑥 𝑒

5 67
89: + 𝑥

𝜕
𝜕𝑥 	𝑒5

67
89: ,	

	
	

= 𝑒5
67
89: 	

−1
4𝐷𝑡 𝜋𝐷𝑡

+
𝑥*

8𝐷*𝑡* 𝜋𝐷𝑡
,	

	
which	becomes		
	

𝑒5
67
89:

𝑥* − 2𝐷𝑡
8𝐷𝑡* 𝜋𝐷𝑡

																																																					 5 	

	
after	rearranging	and	simplifying.	Clearly,	(4)	and	(5)	agree,	hence	we	proved	that	 3 	is	a	
solution	for	(2).	
	
2.1	Average	time	
	
Next	we	want	to	determine	the	average	time	it	takes	for	such	a	particle	to	cover	a	distance	
(𝑥)	while	diffusing	in	the	cell.	The	average	distance	< 𝑥 >	travelled	by	the	particle	in	the	cell	
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is	0.	However	it	does	move	about,	thus	we	are	looking	for	< 𝑥* >,	the	average	value	of	𝑥*,	
in	order	to	calculate	the	mean	time	𝑡.	One	can	calculate	< 𝑥* >	by	evaluating	
	

𝑥*𝑓 𝑥, 𝑡 𝑑𝑥,																																																													(6)
E

5E
	

	
given	that		

𝑁 𝑡 = 𝑓 𝑥, 𝑡 𝑑𝑥 = 1,																																																				(7)
E

5E
	

	
where	𝑁 𝑡 	 is	the	area	under	the	graph	of	the	probability	distribution	function	𝑓 𝑥, 𝑡 .	To	
start	with,	let	𝜆 = I

89:
	,	then	from	(3)	we	have	

	

𝑓 𝑥, 𝜆 =
𝜆
𝜋		𝑒

5J67.																																																													(8)	

	
Then	combining	(8)	and	(7)	one	can	see	that		
	

𝜆
𝜋		𝑒

5J67𝑑𝑥 = 1,																																																															
E

5E
	

	
which	is		
	

		𝑒5J67𝑑𝑥
E

5E
=

𝜋
𝜆 																																																													(9)	

	
after	rearrangements.	By	partially	differentiating	both	sides	with	respect	to	𝜆,	we	get		
	

	−𝑥*𝑒5J67𝑑𝑥
E

5E
= −

1
2

𝜋
𝜆L																																																											

= −𝑥*𝑒5
67
89:𝑑𝑥

E

5E
= −

1
2 𝜋 4𝐷𝑡 L																																								(10)	

	
Our	aim	is	to	get	the	left	hand	side	of	(10)	in	the	form	of	(6),	hence	multiply	both	sides	with	
− I
*	 *M9:	

:	
	
	

𝑥*
1

2	 2𝜋𝐷𝑡	
𝑒5

67
89:𝑑𝑥 = 	

1
2	 2𝜋𝐷𝑡	

E

5E

1
2 𝜋 4𝐷𝑡 L.																									(11)	

	
The	 left	 hand	 side	 of	 (11)	 clearly	 equals	 to	 (6),	 while	 the	 right	 hand	 side	 is	 2𝐷𝑡	 after	
simplifying	it,	hence		
	

< 𝑥* >	= 2𝐷𝑡																																																														 12 	

Bernard Piette




000619332	
gkgf37	

	
and		
	

𝑑 =	< 𝑥* >	= 2𝐷𝑡,																																																							(13)	
	
where	𝑑	 is	 the	 distance	 travelled	 by	 the	 diffusing	 particle.	 To	move	 on	 in	 the	 process	 of	
determining	the	time	needed	to	diffuse,	we	have	to	calculate	𝐷	for	a	given	particle:	
	

𝐷 =
𝑘O𝑇
6𝜋𝜂𝑟,																																																															(14)	

	
where	𝑘O	is	the	Boltzmann	constant,	𝑇	 is	the	temperature	of	the	system	in	Kelvin,	𝜂	 is	the	
viscosity	of	the	fluid	in	the	cell,	and	𝑟	is	the	radius	of	the	diffusing	particle.		
	
	
2.2	Examples	
	
For	example	the	tubulin	protein	with	radius	𝑟 = 3𝑛𝑚	at	temperature	𝑇 = 300𝐾	and	with		
𝜂 = 2 ∗ 105L	𝑃𝑎	𝑠	has	a	𝐷 = 3.66 ∗ 105II		𝑚*/𝑠,	and	hence	the	average	time	𝑡	to	travel	a	
distance	𝑑 = 50𝜇𝑚	is		𝑡 = 34.15	𝑠	according	to	(13).		
	
Vacuoles	are	tiny	spheres	made	out	of	oil	and	are	stored	and	shipped	to	different	parts	of	the	
cell,	in	addition,	they	have	significant	role	in	the	life	of	the	cell.	Consider	a	vacuole	with	𝑟 =
50𝑛𝑚	under	the	same	conditions	as	before.	Then	one	can	determine	the	time	it	takes	for	the	
vacuole	to	travel	the	distance	𝑑 = 50𝜇𝑚	using	(14)	and	(13),	and	get	𝑡 = 569.22	𝑠.	
	
To	illustrate	that	the	time	can	be	extremely	large	for	long	distance,	consider	a	tubulin	protein	
with	𝑟 = 3𝑛𝑚,	and	calculate	the	time	it	takes	for	it	to	freely	diffuse	from	the	top	in	our	brain	
to	the	bottom	in	our	toe,	 in	which	case	𝑑	 is	approximately	2m,	 leaving	the	conditions	the	
same	as	in	the	previous	examples.	Substituting	the	parameters	into	 14 	and	(13)	we	derive	
that	it	takes	𝑡 = 5.46 ∗ 10I\	𝑠 ≈ 1732	𝑦𝑒𝑎𝑟𝑠.	
	
	
2.3	Displacement	of	particle	
	
All	in	all,	solving	the	diffusion	equation	is	relatively	simple,	however	one	of	its	weakness	is	
that	it	only	gives	us	probability	distribution	of	the	particle,	and	does	not	describe	very	well	
how	the	particle	behaves	at	that	point.	To	illustrate	the	displacement	of	a	particle	in	one	
dimension	at	a	given	time,	we	write	a	program	which	performs	simulations	using	random	
numbers,	and	plots	the	results	in	a	histogram(green)	with	the	theoretical	values(red)	
alongside,	which	were	calculated	by	(3).	
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Fig	1:	comparing	the	results	generated	from	random		
numbers(green)	with	the	theoretical	ones(red)	

	
One	can	see	from	Fig	1	that	the	results	of	the	two	kind	agree,	so	the	probability	of	a	particle	
to	be	at	𝑥	at	a	given	time	𝑡	can	be	determined	in	either	way.	
	
2.3	The	average	time	
	
Previously	we	 calculated	 the	 typical	 time	 it	 takes	 for	 a	 particle	 to	 cover	 a	 given	distance,	
however	to	calculate	the	average	time	it	takes	for	a	particle	to	cover	such	a	distance	we	write	
another	program,	which	computes	the	average	time	at	5	different	distances	𝑑	and	3	different	
values	of	𝐷.	The	table	with	the	results	is	show	below:	
	 	

		𝑑											𝑡: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑											𝐷											𝑡: 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙	
	
		1.											1.02451706											0.5																				1									
		2.											4.08794975											0.5																				4									
		3.											9.04598808											0.5																				9									
		4.										16.07076073										0.5																			16									
		5.										25.23965454										0.5																			25								
		1.											0.51667798												1.																				0.5								
		2.											2.01035976												1.																						2	
		3.											4.64023256												1.																				4.5							
		4.											8.08319187												1.																						8									
		5.										12.47505665											1.																			12.5								
		1.											0.25744841												2.																			0.25							
		2.											1.03250539												2.																						1									
		3.											2.31130123												2.																				2.25							
		4.											4.12027836												2.																						4									
		5.											6.44544792												2.																				6.25							
	

				
Fig	2:	results	for	average	time	at	various	distances		

and	values	of	𝐷	
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The	expression	for	the	average	time	(𝑡: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑)	is	obtained	by	running	the	program	10000	
times	and	taking	the	mean	of	the	results	at	every	given	𝑑	and	𝐷,	thus	we	get	15	results.	From	
the	 table	 in	 Fig	 2	 we	 conclude	 that	 the	 computed	 values	 of	 average	 𝑡	 agree	 with	 the	
theoretical	ones	within	an	error	of	0.1	in	most	cases.		
	
	
3 Motor	
	

The	 other	 type	 of	 transport	 is	 called	 the	 active	 transport,	which	 is	 faster	 and	more	
effective	than	the	diffusion.	In	this	case,	the	motor	proteins	are	attached	to	their	cargo	on	
one	end,	and	to	the	walkway	(microtubules	or	actin	filaments)	on	the	other	end,	and	they	
“walk”	 on	 the	walkway	 and	 hence	moving	 the	 cargo	 (Fig	 3).	 However,	 they	 can	 also	 get	
detached	from	the	walkway	or	the	cargo.	The	time	between	the	steps	and	the	detachment	
are	both	random,	and	both	given	by	the	Boltzmann	distribution	characterised	by	different	
rates.	Nonetheless,	the	two	events	are	independent	of	each	other.		

	
	

	
Fig	3:	illustration	of	the	movement	of	the	motor	protein	

	
	

We	then	write	a	program	which	illustrate	the	movement	of	the	motor	until	it	detaches.		

	
Fig	4:	a	typical	trajectory	of	a	motor	protein	until	it	detaches	

cargo	
motor	protein	

microtubule	
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3.1	Average	time	and	displacement	as	a	function	of	cargo	radius	
	
To	trace	the	movement	of	the	motor	from	another	point	of	view,	we	examine	the	average	
time	and	the	average	displacement	as	a	function	of	cargo	radius:	

	

	
Fig	5:	the	average	time	the	cargo	travels	until		

it	detaches	as	a	function	of	cargo	radius	
	

It	is	clear	from	Fig	5	that	after	a	point	the	radius	of	the	cargo	is	too	big	for	the	motor	to	keep	
walking	on	the	microtubule.		

	
Fig	6:	the	average	displacement	of	the	cargo		
as	a	function	of	its	radius	until	it	detaches	
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Comparing	Fig	6	and	Fig	5	shows	that	the	displacement	becomes	0	at	the	same	time	when	
the	time	drops	to	0,	hence	the	motor	detaches	at	that	value	of	𝑟.	
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