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Modelling musical instruments

Abstract

In this study, we examined and modelled the profiles of normal mode guitar and piano
strings with respect to time, distance, and frequency. We analysed the behaviour of the
strings under the seven lowest frequencies, and compared the normal mode frequencies to
the expected ones, finding that the higher the frequency the more it is detuned, and this
effect is even stronger for the piano string.

1 Introduction

Playing on a musical instrument is a common thing today. The most popular ones are
probably the guitar and the piano. But does one understand how they actually work? Where
does that sound of a particular key come from? Why do they sound differently from one another?
And what does it mean for an instrument, to ”be in tune”? In the following, we are going to
discuss some of these questions by modelling the piano and the guitar string.

Human ears detect longitudinal vibrations, which can be created by, for example, vibrating
strings at a given frequency. The higher the frequency(Hertz) of the vibration is, the higher
sound we hear, thus we need to examine the frequency of the vibrating strings. Thinking about
such string as a lot of masses connected by springs is a good approximation. Consider N
masses(mi), connected by springs with elastic coefficient k, between two fixed walls, such that
the position of mass mi is Xi:

Figure 1: Representation of the string by the system of N masses with springs between them with
spring constant k.

First we analyse the longitudinal behaviour of such system, meaning that the masses cannot
move in the vertical direction, only along the x axis. The force acting on a spring is then given
by F = kx, where x is the displacement of m from rest position. In our case, this displacement
is equal to the horizontal difference between the adjacent nodes minus d, the rest length(without
any mass connected to it) of the spring between them. Since we have two springs connected
to one mass, each mass experience two counter forces. Therefore the total force on mi is the
difference of the 2 counter forces acting towards mi+1 and mi−1:

Fi = k(Xi+1 −Xi − d)− k(Xi −Xi−1 − d) = k(Xi+1 +Xi−1 − 2Xi), (1)

and by applying Newton’s second law, the force acting on mi at Xi is given by

mi
d2Xi

dt2
= k(Xi+1 +Xi−1 − 2Xi). (2)
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When there is no force acting on the system, dXi/dt = d2Xi/dt
2 = 0, the distance between the

masses is

l0 =
XN+1 −X0

N + 1
. (3)

One can conclude that the distance to the ith mass is

Xi = X0 + il0 + yi, (4)

where yi is the displacement of mi from its static position. Combining (2) and (4) we can obtain

mi
d2yi
dt2

= k(yi+1 + yi−1 − 2yi), (5)

where i = 1, 2, 3, ..., N and y0 = yN+1 = 0. One can rearrange this and write it up in matrix
form as

ÿ = kM−1Ay, (6)

where M = diag(mi), and

A =



−2 1 0 0 0 . . . . .
1 −2 1 0 0 . . . . .
0 1 −2 1 0 . . . . .
. . . . . . . . . .
. . . . . 0 1 −2 1 0
. . . . . 0 0 1 −2 1
. . . . . 0 0 0 1 −2


. (7)

Such system can be solved by seeking special solutions of the form

yµ = vµsin(ωµt), (8)

where v is the eigenvector and ω is the angular frequency for the corresponding mass and µ
labels the unique solutions, up to N . Notice that vµ corresponds to the amplitude of the motion
of the masses. Inserting (8) into (6) gives us the following eigenvalue problem

− ω2
µvµ = kM−1Avµ. (9)

Solutions of (8) are called the normal mode solutions of (5). The frequency of the oscillations
are given by

νµ =
ωµ
2π
, (10)

and writing C=kM−1A, we can rewrite (6) as

ÿ = Cy. (11)

2 Transverse vibrations
Q1

We now consider transverse vibration of the masses by fixing the horizontal coordinates and
only allowing the vertical displacement, see Figure 2. One can compute the potential energy
of such model for each mass. Assume that the fixed horizontal distance between the nodes is
l0 = xi+1 − xi and that the vertical displacement yi+1 − yi << l0. The general formula for
potential energy is V = 1

2kD
2, where D is the displacement of the compressed spring from its

rest position. In this case, with the help of Figure 2 one can compute that the length of the
compressed spring:

xi =
√
l20 + (yi+1 − yi)2. (12)
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Figure 2: Modelling the transverse motion of the masses.

To get the displacement D, we subtract d, the rest length of the spring, from x:

D =
√
l20 + (yi+1 − yi)2 − d, (13)

and hence the potential energy is

Vi =
k

2

(√
l20 + (yi+1 − yi)2 − d

)2

, (14)

Since there are N masses, we can derive the expression for the potential energy of the whole
system from (14):

V =
k

2

N∑
i=0

(√
l20 + (yi+1 − yi)2 − d

)2

. (15)

If we expand (15) we have

V =
k

2

N∑
i=0

(
l20 + (yi+1 − yi)2 + d2 − 2d(

√
l20 + (yi+1 − yi)2

)
. (16)

Introducing the new variables

a = l20 and x = yi+1 − yi, (17)

one can compute the Taylor expansion of
√
a+ x2 and get√

a+ x2 =
√
a+

x2

2
√
a
− . . . . (18)

Note that since x = yi+1 − yi and yi+1 − yi << l0, we can neglect the terms which contains xp

for p > 2 in the numerator. Hence we have√
l20 + (yi+1 − yi)2 = l0 +

(yi+1 − yi)2

2l0
, (19)

and (16) then simplifies to

V ≈
N∑
i=0

(
k

2
(l0 + d2 − 2dl0) +

k

2

(
1− d

l0

)
(yi+1 − yi)2

)
. (20)
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Introducing the new variables

v0 =
k

2
(l0 + d2 − 2dl0) and κ = k

(
1− d

l0

)
, (21)

(20) becomes

V ≈
N∑
i=0

(
v0 +

κ

2
(yi+1 − yi)2

)
, (22)

which is the quadratic approximation of the potential energy, and we have

mi
∂2yi
∂t2

= −∂V
∂yi

. (23)

We write out this sum as

V = Nvo +
κ

2

[
(y1 − y0)2 + (y2 − y1)2 + (y3 − y2)2 + . . .

]
. (24)

Notice that the potential energy at the end points is V0 = VN+1 = 0, hence F0 = FN+1 = 0,
so to compute the force acting only on the masses without the end points, take now i = 1 and
rewrite (24) as

V = Nvo +
κ

2

[
(yi − yi−1)2 + (yi+1 − yi)2 + (yi+2 − yi+1)

2 + . . .
]
. (25)

Substituting (25) into (23) and simplifying that gives us

mi
∂2yi
∂t2

= −∂V
∂yi

= κ(yi+1 + yi−1 − 2yi). (26)

Q2

Note that in (25) the derivatives, with respect to yi, of the terms after (yi+1− yi)2 are 0. By
looking at Figure 2 and (21) one can conclude that l0 cannot be smaller than d, and l0 = d only
if there are no masses in the system and no force acting on it. So we have d < l0 and therefore
κ > 0.

3 Guitar string

The system discussed above, with very large number of masses, can be viewed as an approx-
imately model for a guitar string. Assume that the end points are fixed, X0 = 0 and XN+1 = L,
and that the displacements yi do not vary too much between nodes. Then we can use the Taylor
series to approximate the terms yi+1 and yi−1, which are identical to y(xi + l0) and y(xi − l0)
respectively, in (26) or (5). Using this approximation and assuming that all the masses are
equal, mi = m, we have

∂2y

∂t2
= c2

∂2y

∂x2
, (27)

which is in fact the wave equation of the string, and c = l0
√
κ/m. To solve this we need to Q3

apply the method of seperation of variables. Let y = f(x)g(t), then (27) becomes

f
d2g

dt2
= c2g

d2f

dx2

1

g

d2g

dt2
= c2

1

f

d2f

dx2
= λ,

(28)
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where λ is a constant since both sides of (28) are independent from each other: the left hand
side depends on t while the right hand side depends on x. Then we have

λ

c2
f = f̈ and λg = g̈ (29)

which is a homogeneous second order linear constant coefficient ODE. The general solution for
this ODE is

f(x) = Ae
√
λ/c2x +Be−

√
λ/c2x. (30)

Given the fixed end points at x = 0 and x = L, we have the boundary conditions f(0) = f(L) =
0. Applying the first condition to (30) we have

f(0) = 0 = Ae0 +Be0

A = −B
(31)

and hence (30) with the second condition becomes

f(L) = 0 = A(e
√
λ/c2L − e−

√
λ/c2L), (32)

which is 0 if and only if A = 0 or

e
√
λ/c2L = e−

√
λ/c2L

e2L
√
λ/c2 = 1.

(33)

We know that eiθ = cosθ + isinθ. In our case iθ = 2L
√
λ/c2, cos(θ) = 1, and sin(θ) = 0,

therefore θ = 2nπ for n ∈ Z, and

iθ = i2nπ = 2L
√
λ/c2

λ = −
(
cnπ

L

)2 (34)

One can now rewrite (30) using (31) and (34):

fn(x) = A(e
nπ
L
ix − e−

nπ
L
ix). (35)

But with

e(
nπ
L
ix) = cos

(
nπ

L
x

)
+ isin

(
nπ

L
x

)
,

e−(
nπ
L
ix) = cos

(
− nπ

L
x

)
+ isin

(
− nπ

L
x

)
,

(36)

and with basic trigonometric identities, (35) simplifies to

fn(x) = 2Aisin

(
nπ

L
x

)
. (37)

Applying the same method, one can derive the most general solution for gn(t), that is

gn(t) = Ãcos

(
nπc

L
t

)
+ B̃sin

(
nπc

L
t

)
, (38)

where Ã and B̃ are constants, and thus we have

y(x, t) =

∞∑
n=1

Ansin

(
nπ

L
x

)(
Ãncos(

nπc

L
t) + B̃nsin(

nπc

L
t)

)
. (39)
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Given (34) and the relation between the eigenvalue, λµ and the angular frequency, ωµ,

λµ = −ω2
µ, (40)

we conclude that

ωn =
cnπ

L
, (41)

and the frequency of the oscillations is

νn =
ωn
2π

=
cn

2L
. (42)

Rearranging (41) and combining it with (37) we can derive an expression for fn(x) in terms of
ωn:

fn(x) = 2Aisin

(
ωn
c
x

)
. (43)

Above we solved the wave equation (27) for constant c, but when c depends on x, we need Q4

another approach. For now we stick with constant c. (27) is also an initial value problem, which
can be solved by considering the initial values for y and ẏ and (26) as a system 2N first order
ODE:

gi(t) =
dyi
dt
,

dgi(t)

dt
=

κ

mi
(yi+1 + yi−1 − 2yi).

(44)

Figure 3 models the guitar string equipped with particular initial values at t = 0: y(x) =
sin(πx/L) and ẏ(x) = 0 for the left graph, y(x) = sin(9πx/L) and ẏ(x) = 0 for the right one,
and T is the period. From (37) it follows that n = 1 in the first case, which corresponds to the
first normal mode, as shown on the graph, and n = 9 for the second case. Using (41) one can
compute the frequencies of these profiles. Q5

Figure 3: The profile of the string at 6 given times with the
initial value y(x) = sin(πx/L) on the left and y(x) = sin(9πx/L) on the right.

We observe that as t increases, the string is travelling from the initial position(at the amplitude)
to its first amplitude, which happens at t = 5T/10, which is clearly, the half of the period.
Meanwhile, Figure 4 models the profile of the fixed point, x = L/3, on the string as a function
of time. One can see that there are 20 peaks on the graph, meaning that this one point on the
string reached the same height 20 times, so the system was running till t = 20T . Furthermore,

on Figure 5 we plot the averaged modulus of the Fourier Transform(
√
a2i + b2i ) of the vibrating

string.
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Figure 4: The behaviour of the string with the initial condition
y(x) = sin(πx/L) and ẏ(x) = 0 at x = L/3 as a function of time.

Figure 5: The logarithmic plot of the averaged modulus of the Fourier Transform
of the vibrating string with the same initial conditions as above.

3.1 Normal modes at different frequencies
Q7

In the previous section we examined the behaviour of guitar string at various times but
with a given initial condition, hence given frequency. This time we study the system at various
frequencies, namely, at the lowest frequencies. The frequencies are obtained by (40), but we
plot the eigenvector, vµ, corresponding to the eigenvalue, λµ , since they represent the largest
displacement of the mass mµ based on (8)(see Figure 6).
The left hand side of Figure 7 shows the ratio νµ/ν0 (in blue) and the identity function(in red)
on as a function of the index number µ, starting from µ = 1, and for N = 200. On the other
hand, the one on the right shows νµ, the computed frequencies of the normal mode, as a function
of the normal mode index µ(in blue), as well as the expected values of the frequencies(in red)
based on (42), for N = 900.
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Figure 6: Normal modes of the string at the 7 lowest frequencies.

Figure 7: The ratio of the frequencies with the identity function on the left, and the computed and
expected frequencies of the normal modes against their index on the right.

Q6

In the second plot of Figure 7 we used N = 900 because the smaller the N , the greater the
difference is between the expected and the normal mode frequencies. For N = 900 the difference
between νµ and µν0 for µ < 100 is smaller than 10 cents[1], hence it is a sensible value and gives
a better approximation to the theoretical equation. For N = 900 the lowest frequency of the
normal modes is ν0 = 261.5872 which is almost identical to the analytical solution, ν0 = 261.5873
based on (43), while it is ν0 = 261.5845 for N = 200.

3.2 Closer to reality

In real, one could hardly demonstrate the case discussed above. Instead, the guitar string
is normally plucked by the player’s finger. Then the string forms a triangular shape, and then
it is released suddenly. We are now going to simulate the motion of this case, with the same
parameters as before. One can notice the difference between the two graphs on both Figure 8 Q8

and Figure 9: the first ones are sharper, more stable than the second ones. This is due the
greater number of nodes and hence masses used on the string. The more nodes we use, the
better approximation we get for a real string. On the second graph of Figure 8 one can compare
the profile at t = 0 and t = 5T/10: due to the small number of masses, clearly, the string does
not reach the amplitude, y = 1, by the time it travels half a period. Furthermore, it becomes
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wobbly by that time. We can conclude that modelling the plucked string is more tricky than
the simple normal mode one, since there are more parameters affecting the system.

Figure 8: The profile of the first normal mode of the plucked guitar string(at x = L/3)
at 6 different times for N = 900 on the left and N = 100 on the right.

Figure 9: The motion of the point x = L/3 on the string for the first normal mode for
N = 900 on the left and N = 100 on the right, as a function of time.

4 Piano string

4.1 Formula derivation
Q9

Piano strings are thicker than guitar strings and made out of metal, which requires more
energy to bend them. This results in a slightly different equation from (27):

∂2f

∂t2
= c21

∂2f

∂x2
− c22

∂4f

∂x4
. (45)
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To derive the finite order approximation of the ∂4f/∂x4 term using the 5 points xi, xi±1, xi±2,
we apply the Taylor expansion of f(x± dx) and f(x± 2dx) up to the 5th order. We obtain

fi±1 = f(xi ± dx) =f(xi)±
df(xi)

dx
dx+

d2f(xi)

dx2
dx2

2!
± d3f(xi)

dx3
dx3

3!

+
d4f(xi)

dx4
dx4

4!
± d5f(xi)

dx5
dx5

5!
+ o(dx6),

fi±2 = f(xi ± 2dx) =f(xi)±
df(xi)

dx
2dx+

d2f(xi)

dx2
4dx2

2!
± d3f(xi)

dx3
8dx3

3!

+
d4f(xi)

dx4
16dx4

4!
± d5f(xi)

dx5
32dx5

5!
+ o(dx6).

(46)

We need to take the following linear combination of the 4 equation in (46) to eliminate the
derivative terms other than ∂4f/∂x4:

(fi+2 + fi−2)− 4(fi+1 + fi−1) = −6fi +
∂4f

∂x4
dx4 +O(dx6), (47)

and rearranging this gives us

∆4
i =

∂4f

∂x4
=
fi+2 + fi−2 − 4fi+1 − 4fi−1 + 6fi

dx4
+O(dx2), (48)

and hence (45) can be written as

∂2f

∂t2
= c21∆

2
i f − c22∆4

i f. (49)

The matrix form of (49) as follows

∂2f

∂t2
=

c21
dx2

(A2 +B2)f−
c22
dx4

(A4 +B4)f, (50)

where B2 and B4 are the given matrices for the boundary terms, A2 is identical to (7) and A4

is the matrix representation of the coefficients in (48). For instance A4 for N = 11 is a 7 × 7
matrix, because there are 2 endpoints and 2 boundary conditions on the string: Q10

A4



6 −4 1 0 0 0 0
−4 6 −4 1 0 0 0
1 −4 6 −4 1 0 0
0 1 −4 6 −4 1 0
0 0 1 −4 6 −4 1
0 0 0 1 −4 6 −4
0 0 0 0 1 −4 6


. (51)

Notice that (50) can be rewritten in the form of (29) and hence it becomes an eigenvalue Q11

problem such as earlier.
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4.2 Modelling

Figure 10: The motion of the piano string for the 7 lowest frequencies(left) and the frequency ratio
νi/ν0 against the index i with the identity function in red.

The behaviour of the piano string is shown on Figure 10. The shape of the profiles of the
7 lowest frequencies are similar to the guitar string profiles in Figure 6, but second graph is
different from Figure 7, meaning that the frequency is changing differently as we go down on
the piano string. This could be due to the fact that in this case, the string has additional 2
boundary conditions apart from the 2 endpoints, and that it is made of metal.

Figure 11: The inharmonicity against the frequency on the left, and the first 100 lowest calculated
frequency and its expected values.

Figure 11 shows as well that the further we are on the string, the greater the difference is between
the expected and the normal mode frequency. In addition, the graph on the left tells us that
the inharmonicity(the discrepancy from the expected frequency) exponentially increases with
increasing normal mode frequency. The 19th frequency, ν19 = 5310.08808835 Hz, is the first
frequency which is already detuned by over 1 semi tone(100 cents). All in all, can conclude
that the piano string is harder to tune compared to the guitar string.
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