
gkgf37

Finding the fractional clique cover number and the
Shannon entropy for graphs

Abstract

In this study we carried out optimisation for the given linear programming problems using
PuLP python library to find the optimal values: the fractional clique cover number and the
Shannon entropy, given various constraints. After modifying the LPs and constraints to the
appropriate form, we successfully optimised the problems and derived the optimal value and
the corresponding vector for each case.

1 Introduction

For any graph G with vertices V and edges E, we have G(E,V). For each subset S of V,
we have a value xS . The fractional clique cover number and Shannon entropy are the optimal
values of Minimise

∑
xS over all possible S and Maximise xV , respectively, subject to various

constraints. Since the constraints initially were given in a mathematical form, we solved the LPs
on paper for some very simple graphs to better understand how to derive the constraints for the
computer. In our program we used the python library PuLP to optimise the Linear Programs.

2 The fractional clique cover number: π∗(G)

PuLP requires us to identify the variables that appear in the constraints of the problem.
These variables are all xS such that S ⊆ V .

According to the constraints all xS had to be greater or equal to 0, moreover we were looking
to minimise the sum, thus we set the initial value of all xS to 0. Then we derived K(G), the
collection of sets of G(V,E) which are cliques of G too. The constraints were the following:∑

S:v∈S
xS ≥ 1 ∀v ∈ V, (1)

xS = 0 ∀S /∈ K(G). (2)

Since xS for all non-clique S has to be zero, we modified the above constraints so that it is only
relevant to the cliques of G, and we left the xS for every non-clique S to be zero:∑

S∈K
xS ≥ 1 ∀v ∈ V. (3)

In fact, this means we can simplify our objective function to the following:

Minimise
∑
S⊆K

xS . (4)

The only one constraint that is left to put in our system is Equation 3. To do so, for each v in
V we created a list which contained the relevant xS variables, and then included this in another
list, thus we created a list of lists called constraints, where the first dimension corresponds to
the given vertex, and the second dimension contains the xS values for subsets S ∈ K which
contains the given v. Next for each v we added the constraint to the LP problem: that the sum
of the values in the second dimension of constraints for a given v must be greater or equal to
1. For example, if K = {{∅}, {a}, {a, b}, {b}}, then constraints = [[a, ab], [b, ab]] and we have:

x{a} + x{a,b} ≥ 1 and x{b} + x{a,b} ≥ 1, (5)

hence to minimise the Equation 4 we have x{a} = x{b} = 0 and x{a,b} = 1.

1

gkgf37

3 The Shannon entropy: η(G)

First, similarly to the LP above, we added the basic constraints to the system i.e. x{∅} =
0, x{v} ≤ 1 ∀v ∈ V and xS ≥ 0 ∀S ⊆ V . For the remaining three constraints, several
modification were required. For

xN(v)∪{v} − xN(v) = 0 ∀v ∈ V (6)

we created a 2d list, con1, where the first dimension list corresponded to the vs, and for each v
we had a list containing 2 elements in the second dimension of con1: the x value of the subset
N of V , where N is the neighbourhood of vertex v, and the other element is the x value for the
same neighbourhood containing the vertex v itself. Then we put this list in a loop and added
the constraint Equation 6 to the LP solver for each v.

Next we have
xS − xP ≥ 0 ∀P ⊆ S ⊆ V. (7)

For each S we created a list of its subsets: the possible sets P . Then for each xS we have a list
,con2, of xP : a 2d list. The way we represented this is that the first element of in the second
dimension lists is the corresponding xS and this is then followed by the relevant xP values. For
instance for V = {a, b} we have S = [x∅, xa, xb, xa,b] and thus Px∅ = [x∅], Pxa = [x∅, xa], Pxb

=
[x∅, xb] and Pxa,b

= [x∅, xa, xb, xa,b]. Therefore con2 = [[x∅, x∅], [xa, x∅, xa], [xb, x∅, xb], [xa,b, x∅, xa, xb, xa,b]].
Once we established the constraints lists and rules, it was straightforward to use nested loops

to satisfy Equation 7: for each element of con2, we subtracted the all but the first element of the
sublist from the first element one by one and adding them to the LP solver as constraints. In
the previous example it gives xa,b − xa ≥ 0 and xa,b − xb ≥ 0. Note that in each sublist of con2,
the first and last x derived from P (that is the second and last element of the sublist) can be
neglected due to the previous constraints. By doing so, we successfully improved performance.

Our last constraint states

xS + xT − xS∪T − xS∩T ≥ 0 ∀S, T ⊆ V. (8)

By using nested loops we produced the values [xS , xT , xS∪T , xS∩T] for each combination of S
and T , obtaining a 2d list, con3, of size |S|2 × 4. Note that if xS = xS∪T and xT = xS∩T or
xS = xS∩T and xT = xS∪T , then this gives 0, thus we neglected these options which resulted
in better performance. Finally, using another loop on con3 we added the constraints to the LP
solver according to Equation 8.

4 Program execution

To run the program, make sure PuLP python library is installed and optimisation.py and
rational.py are in the same directory. Open optimisation.py : to input your graph, modify V
(vertices) and E (edges) on the top of the script, so that it matches your graph’s properties. Make
sure the vertices are single-valued letters e.g. ’a’, ’b’, ’c’, ..., and the edges are the concatenation
of the relevant vertices e.g. ’ab’, ’bc’, ’ca’, etc. Next, execute the program, which will produce
a text file optimal solution.txt which tells us if the found solution is optimal, its value and the
corresponding vector for both LPs, in rational format.

5 Results

As an output the program produces the optimal values for π∗(G) and η(G) with their corre-
sponding vectors of xs: x. Furthermore, it successfully verified the results for some basic simple
graphs that we calculated earlier on paper and fulfilled the theorems that for a complete graph
Kn with n vertices we have π∗(Kn) = 1 and η(Kn) = n − 1, and that for any Gn we have
π∗(Gn) + η(Gn) ≥ n. Figure 1 shows the diagram and the results obtained from a graph with

2

gkgf37

Figure 1: The top figure shows a graphical representation of the problem and the bottom one shows
the results obtained from such a graph G.

8 vertices. Clearly, π∗(G) = 5/2 and η(G) = 11/2 sums up to 8 = n, so the program respected
the theorem from earlier. Moreover, one can see that all of the obtained values are in rational
format, unless they are integers.

5.1 Limitations

For our script to work properly, we need to have single-valued letters as vertices, meaning
that the program cannot take more than 26 vertices (assuming English alphabet). Furthermore
we found it hard to test the accuracy of the system as there was not much material to com-
pare the results with. The obstacles throughout the process were to first understand what the
problem was and what the constraints meant through a real example, and then to translate
the mathematical constraints to computer language. During programming we also struggled
assigning PuLP variables to the x values in a convenient way, because doing so changed the
datatype of these xs and thus we could no longer use them as list elements. For this we created
a copy of the vector x which we dynamically updated with the correct values while maintaining
its datatype as string.

3

	Introduction
	The fractional clique cover number: *(G)
	The Shannon entropy: (G)
	Program execution
	Results
	Limitations

